大气机高度输出接口电路的设计

发布者:MysticGlow最新更新时间:2014-03-05 来源: elecfans关键字:大气机  高度输出  输出信号 手机看文章 扫描二维码
随时随地手机看文章

  为完成俄制大气机与国产航管应答机的交连,设计了由单片机、A/D转换器、电平转换电路、驱动电路、隔离电路和电源等电路组成的俄制大气机高度输出接口板电路。采取数据校准和抗干扰技术,简化硬件电路,提高高度数据转换精度和系统的抗干扰能力。实验表明,该接口电路实现了高度数据的数字化,能够将俄制大气机输出的模拟高度电平信号转换成满足国产航空应答机要求的数字编码信号。

  1 应答机高度信号输入要求

  换装的国产新一代航管应答机为A/C模式,高度输入要求为串行输入数字信号,接口电气性能采用RS 422规范,数据格式符合国际民航组织的相关规定,高度内容由10位格雷码构成,单位为英尺,范围为:-1000~62700英尺(-304~19111m),按100英尺的高度增量进行编码。

  2 大气机高度输出信号形式

  大气机是根据大气压强随着高度增加而下降的原理测量飞机高度的。俄制大气机的高度输出为模拟电压信号,其输出接口电路等效为一个电位器,由两个固定电阻R1,R2和一个电位器R3组成,组成原理如图1所示。可调电位器的滑动触点与气压膜盒相连,当气压变化时,膜盒带动触点滑动,将气压的变化转换为电阻的变化。

  图1中,1端为公共端,一般接地;2端为电压输入端;3端为高度电压输出端。大气机输出的高度电压Uout为:

  Uout=UinW (1)

  式中:Uin为输入电压;W为电位器阻值变化相对值,其表达式为:

  

b.jpg

 

  由于固定电阻R1,R2的存在,W的取值范围为:10≤W≤90。

  与一般电位器不同,可调电位器本身的阻值分布依据气压与高度之间的函数关系制成,它将气压与高度之间复杂的函数关系,转变为线性关系。因此也称其为函数电位器。绝对气压高度与W之间的关系曲线如表1所示。

[page]

  从表1可以看出,W和绝对气压高度之间近似为线性关系,当绝对气压高度大于1 000 m时线性较好。表1数据可用下面一次函数近似表示:

  H=187.5(W-10) (3)

  式中H为绝对高度,单位为m。

    3 接口板设计

  3.1 硬件构成与原理

  根据大气机输出信号形式和航管应答机输入信号要求,设计了高度接口板,其原理框图如图2所示。该接口板主要由单片机、A/D变换电路、隔离/驱动电路、隔离电路、TTL/RS 422转换电路及电源电路等组成。

  由AD574产生的基准电压,经隔离/驱动电路加到大气机高度函数电位器的2端,函数电位器3端输出和大气机气压高度成正比的电压信号。此电压经隔离器加到A/D变换器上,A/D变换器将此电压变换为与之对应的数字信号,经单片机变换成用串行格雷码表示的高度数值,最后由TTL/RS 422变换电路变换为符合RS 422接口规范的信号,送至航管应答机。

  隔离/驱动电路用来对AD574产生的基准电压源进行电流放大,同时起隔离作用,防止函数电位器的阻抗变化对基准电压源产生影响,从而影响A/D转换精度。

  隔离电路的作用是防止A/D变换电路的输入阻抗对大气机函数电位器的阻抗产生影响。

  A/D变换器的作用是将模拟的高度电压信号转换成数字信号,同时产生大气机函数电位器需要的输入电压。[page]

  由于大气机给出的气压高度精度有限,国际民航组织规定高度编码的增量为100英尺。现俄制大气机的高度输出范围为0~15 000 m,换算成英制为0~49 213(15 000/0.304 8≈49 213)英尺。如果按100英尺为量化单位,共需要493(49 213/100≈493)位编码。A/D变换器的位数N应由下式确定:

  2N≥493-1 (4)

  由式(4)得,N≥log2(493-1)≈8.9。因此,9位A/D位芯片就能满足要求。本设计采用12位A/D变换器AD574,和9位A/D变换器相比,量化误差减小到1/8,提高了高度电压输出精度。

  电源电路的作用是为各部分电路提供直流电源。A/D变换器的转换精度不仅取决于输出位数,而且与供电电源的品质也有很大关系。目前主要有模拟串联稳压和开关DC/DC变换两种电源体制。模拟串联稳压电源有开关电源无法比拟的优点就是不产生尖峰干扰,其纹波干扰也可通过滤波降低到足够低的水平。本方案采用机上115 V/400Hz电源为高度接口板的原始电源,采用串联稳压电源体制加兀型滤波方案,为12位A/D变换器提供了高品质的电源系统。

  CPU是接口板的控制计算中心,主要完成A/D转换控制、数据校准与编码(将二进制数字信号变换成符合国际民航组织规定的串行格雷码)、并一串转换和数据软件滤波等功能。

  3.2 数据校准与编码

  由于函数电位器的输出与气压高度为近似的线性关系,特别是在1 000 m以下线性较差,如果直接按式(3)求高度,将会造成较大误差。因此需要对高度数据进行校准。

  数据校准可采用硬件校准或软件校准。采用硬件校准,不仅增加了设备的体积和重量,提高了成本,而且难度大,精度低。采用软件校准,不仅可以节省成本,而且方法简单,效果好。因此,本方案采用的是软件校准中的查表法。

  表格的制作方法是:第一步,通过实验测出表1所示大气机绝对气压高度值对应的A/D输出的二进制值Un第二步,将绝对高度值以格雷码形式存入单片机内部的存贮器,存贮器地址对应A/D输出的二进制值U。对于位于表1中数据点之间的点,可将相邻两点间的曲线看作是直线,通过线性插值法求出每个A/D输出值对应的高度值,并存入存贮器。假设(Hn-1,Un-1)和(Hn,Un)是表1中相邻的两点,当Un-1

e.jpg

  采用查表法可大大提高转换精度。

  3.3 抗干扰措施

  各种干扰对测高精度也有较大的影响,如本机噪声及来自其他机载电子设备或环境的干扰等。为提高测量精度,本设计采取了有效的抗干扰措施。

  电源设计上采取了低纹波方案,消除电源本身产生的干扰。另外,在接近各器件供电脚附近加装滤波电容,消除由供电线引入的各种瞬态干扰信号。

  软件抗干扰是一种简便、有效的方法。本设计采取了剔除奇异值法和平均值滤波法抗干扰措施。

  对每一高度值进行N次等时间间隔采样,并求出N个采样值的平均值。如果某个采样值与该平均值相差较大,可认为是非正常值(奇异值),予以剔除。将剔除奇异值后的数据再次求平均值,并将该值作为这一点的高度值。

  上述软件抗干扰措施对消除瞬态脉冲干扰和噪声干扰非常有效。

  4 结语

  本设计采取了数据校准和抗干扰措施,使测量精度大大提高。实践表明,该高度接口板满足俄制大气机与国产应答机的接口要求。工作稳定、可靠,转换精度高,其输出高度和大气机的高度指示器读数的误差不大于2 m,满足指标要求。另外,产品的通用性好,只要加载不同的函数电位器数据及编码格式,就可以适应不同的输出源及输入目标产品的要求。

关键字:大气机  高度输出  输出信号 引用地址:大气机高度输出接口电路的设计

上一篇:高速DS80C320单片机软核设计
下一篇:基于Modbus协议与MCX314的自动钻孔系统设计

推荐阅读最新更新时间:2024-03-16 13:37

基于PC的数字电视白平衡测量调整仪
  本文介绍了一种基于PC的白平衡自动测量调整仪的系统结构和基本原理。该系统的测试信号发生、调整信号输出、白场色度测量均由PC控制,实现了基于PC的测控一体化。该测量调整仪可用于有I2c接口的数字电视的白平衡调整,通过适当调整还可用于彩屏手机和LCD显示器等的白平衡调整。 数字电视的巨大市场为消费电子厂家看好,目前已经成为各家电厂家的开发热点。在对TV色彩效果要求愈来愈高的情况下,白平衡调整成为TV质量控制的必备工 序。与模拟电视不同,数字电视的白平衡调整采用不同的方法,因此需要不同的白平衡调整设备。本文介绍一种基于PC的白平衡自动测试调整设备,该设备适用于 数字电视的生产质量控制。基于同样原理,工程师可开发适用于彩屏手机
[测试测量]
信号发生器输出两个时序不一样的波形,最小的时序间隔
接着上周的文章来讲,我们在某些测试中需要两个时序不一致的驱动信号去控制开关管,如MOSFET或者IGBT,而在某些测试中就十分看重两个开通信号或者关断信号的间隔时长。 如在双脉冲测试(Double Pulse Test,DPT)中,研究并联功率开关管的均流问题时,我们需要控制不同的开关管的驱动信号在不同的时刻到来,这就涉及两个下降沿的最小时序间隔的问题。 图 1 最小时序间隔Tmin 使用我们上周讲的泰克信号发生器的“任意波”功能,来测试两个波形的最小时间间隔,根据上周的文章来讲,我们将周期设置为10us,横坐标点数设置为N=10000个点。 图 2 “任意波”界面的设置 经过简单的计算,可以发现在此设置下,每间隔一个
[测试测量]
<font color='red'>信号</font>发生器<font color='red'>输出</font>两个时序不一样的波形,最小的时序间隔
无需精密电阻的DAC输出转换为单端信号的电路
     电路功能与优势      将宽带DAC互补电流输出转换为单端信号的传统方法是使用中心抽头变压器,或者在差分转单端配置中使用一个单通道运算放大器。然而,变压器的低频非线性可能会限制其在DC附近使用;运算放大器方法则要求电阻严格匹配,以提供直流共模抑制、负载阻抗和互补DAC输出之间的增益匹配。如果匹配有误差,则最终输出也会产生误差。本电路利用差分接收放大器AD8130实现简单的差分转单端功能,无需使用昂贵的精密电阻,从而以更少的元件提供更高的精度。      AD8130还有一个优势,即具有业界领先的交流共模抑制性能(10 MHz时为70 dB)。可以利用这一特性抑制DAC数字地层与接收器模拟地层之间的噪声,这是
[模拟电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved