温湿度分时段控制研究

发布者:SparklingRiver最新更新时间:2014-03-21 来源: elecfans关键字:温湿度  分时段控制  PIC16C72 手机看文章 扫描二维码
随时随地手机看文章

我们在项目《温度/湿度因子与云烟烘烤质量的相关分析》中,需要一个温湿度分时段变化的环境,为此,设计了以PIC单片机为核心的温湿度分时段控制系统,安装在一气候室中,取代其原有的控制系统并利用了箱体和大部分执行部件,建成一温湿度分时段变化环境。本系统可将整个控制过程分成多个(最多时12个)时段,每个时段设定不同的温度和湿度,温度范围为室温~90oC ,湿度范围为20~90%R.H 。但由于是双变量、宽范围变化系统,变量变化范围大,变量间有偶合作用,比已往情况要复杂得多,所以遇到了一些新的问题。

温度控制算法设计和仿真试验
由于温度属于大延时惯性对象,经分析比较,采用增量式PID控制算法对温度进行控制,取采样周期T = 20s,用暂态响应法整定控制参数,得到控制方程:
△Ui = 0.69△ei - 0.04ei + 3.1(△ei - △ei-1) (1)
式中△UI:本次和上次控制量之差;ei:本次测量值;△ei:本次和上次测量值之差。
为确定(1)式的调节效果,我们进行了仿真试验:将温度控制分成两个时段,第一时段温度设置为30oC,运行时间30分钟,第二时段温度设置为45oC。试验中,每隔10s记录一次温度值,然后把时间-温度对应数值标在坐标纸上并连接成温度曲线,见图1。显然,温度过渡期间出现了明显的过冲和宽幅振荡现象(实测振幅达7 oC)。经分析,过冲和振荡是由于发热器温度的滞后特性、控制算法产生的饱和效应和采样周期选择不当等原因造成。通过反复研究,最后采取以下校正措施:过渡期一开始, 控制量U即按
最大值Umax输出;采样周期修定为10s;当温度>40 oC时,便定为进入45 oC的保温段。相应地,(1)式修改为:
△Ui = 0.35△ei - 0.023ei + 1.57(△ei - △ei-1) (2)
校正前和校正后的温度曲线见图1,可见,过冲和振荡现象已被基本抑制。仿真结果指出:在保温段,温度控制精度稳定在±1 oC以内,偏差主要源于自然升温段到保温段的过渡时期。
图1 过渡时期温度曲线(带'Х'段为校正后曲线段)

湿度测量设计
目前基于单片机的湿度测量方法主要有两种:一是采用干湿球法,二是采用湿度传感器。
干湿球测湿法试验与结论
我们首先对干湿球法进行了试验。干湿球测湿原理是:用一只热电阻传感器检测空气温度(干球温度),用另一只相同的传感器检测被蒸馏水浸湿的面纱套_的温度(湿球温度),根据检测的温度差,再利用下式进行计算[6]:相对湿度={[湿度饱和水气压-AP(干球温度-湿球温度)]/干球饱和水气压}*100%
(A:常数,与风速有关;P:大气力。)
其中饱和水汽压的计算是关键,我们采用LOWE多项式来近似计算饱和水汽压:
       E = C0 + C1T + C2T2 + ┄ + C6T6
(E:纯水平液面饱和水汽压(干球或湿球);T:温度(干球或湿球);C0_C6:常数。)
试验中,用北京长城航空测控技术研究所研制的双高分子高精度湿度测量仪进行对比的结果是:在20~90%湿度范围内,温度较低时,对比偏差较小,偏差随温度的上升而增加,70oC左右时,已达到8% 。试验表明,干湿球测湿法不适用于温度较高的场合,这个结论对一些研究论文中的说法提出了异议,由于高温环境下的较理想的计算公式一时难以导出,最终我们放弃了这种测湿方案,但却提出了一个新的研究课题。
高分子薄膜电容式传感器测湿设计
湿度传感器使用较多的有如下几种:陶瓷湿度传感器、聚合物湿度传感器、结露式湿度传感器和电容式湿度传感器,其中电容式湿度传感器的线性度好、响应快、工作可靠,是湿度传感器发展的主要趋势,特别是新近推出的高分子薄膜式湿敏电容更是该类产品中的佼佼者,我们在系统的设计中选用了齐齐哈尔科达敏感仪器厂的MSR1高分子膜湿敏电容。

图1 过渡时期温度曲线(带“Х”段为校正后曲线段)

图2 硬件系统组成

图3 中断服务程序框图

湿度传感器经运放电路进行湿—电转换后,再通过A/D转换器进入单片机。首先根据特性曲线,结合实际标定值,按1%的间隔建立起一个A/D转化值与湿度值在特定温度(20oC)时的对应表格。因为是温度大范围变化环境,为保证测量精度,必须对温度进行补偿,为此,分别在30oC、40oC、50oC、60oC、70oC 、80oC 、90oC 的温度下,重复上述测量与数据处理过程,形成8个A/D转化值与湿度值的对应表格,再用线性插值,最终得到每隔1oC的温度补偿值。将全部表格和数据写入EPROM,测量时通过查表获得湿度值。以上设计中,充分发挥了计算机的软件优势,使得在温度允许变化范围内,湿度测量误差不超过±2% 。由于湿度变化较快,惯性较小,采用直接自适应控制算法对湿度进行控制。
在以上湿度测量的设计过程中,试验了几个厂家生产的不同型号的电容式传感器,进而加深了其认识,有必要做一些说明,以便同行研制开发类似产品时参考:①每一个传感器,均给出了两个标定数据(例如0%的输出电压值和50%的输出电压值),由于传感器具有良好的线性度,根据这两点可画出对应温度为25 oC时的输出特性曲线,不必再进行标定。厂家还给出了一个温度补偿计算公式:真实输出电压值=传感器的输出电压值/(a+bT)(a、b为确定的数据,T为环境温度,当T等于25 oC时,a+bT=1)。于是,根据此公式可得到不同温度下的输出特性曲线。不少厂家宣称,传感器的适应范围是-10 oC~90oC和20~90%的全湿全温区域,事实上,我们经试验发现,随着温湿度的增加,以上得到的特性曲线的误差也越来越大,特别是在温度>80oC和湿度>80%的高温高湿区,误差会达到无法接受的程度。所以,高温高湿区的特性曲线应该通过实际标定而不是通过厂家给出的方法来获得。②在放置传感器的微观环境中,风速应保持恒定,否则会引起测量的不稳定性,必要时可加模拟风。
硬件系统组成
系统控制核心选用PIC16C72单片机,由于片内自带EPROM、A/D电路,且22个I/O口均具有较强的负载能力(可直接驱动LED),所以本硬件电路只须很少的外围元件,硬件系统组成见图2。五路执行模块分别实现对各参数的控制,其中升温为连续控制,单片机输出的脉宽可调制型脉冲,经光电可控硅隔离、驱动,控制电热器升温功率。由于升温控制是工作过程中使用最多的控制,所以其高精度、高稳定性的特点提高了整个系统的控制性能。湿度控制为开关控制,湿度加湿采用超生波电加湿器,去湿采用排湿风扇。
图2 硬件系统组成

软件设计
软件部分除主程序外,还包含有中断服务、测量、键盘、显示、控制算法、A/D转换、温度补偿和查表等功能模块。由于系统控制过程是由中断服务程序实现的,本文给出了中断服务程序流程图(见图3),从中可以看到整个程序设计的思路和概貌.

结语
本系统研制成功投入运行一年多,使用结果表明,系统工作稳定可靠、效果良好。另外,本系统尽管是为科研而开发,也适合于农副产品的烘烤与干制、食品的制作与加工、人工气候箱等应用领域。
图3 中断服务程序框图。

关键字:温湿度  分时段控制  PIC16C72 引用地址:温湿度分时段控制研究

上一篇:4级智能可调光电子镇流器电路的实现
下一篇:低功耗无线数字传输模块的设计与应用

推荐阅读最新更新时间:2024-03-16 13:38

基于nRF24L01的无线温湿度检测系统设汁
  0 引言   在当今的工农业生产中,需要进行温湿度采集的场合越来越多,准确方便地测量温度变得至关重要。传统的有线测温方式存在着布线复杂,线路容易老化,线路故障难以排查,设备重新布局要重新布线等问题。特别是在有线网络不通畅或由于现场环境因素的限制而不便架设线路的情况下,给温湿度的数据采集带来了很大的麻烦。要想监测到实时的温湿度数据,就必须采用无线传输的方式对数据进行采集、发送、接收并对无线采集来的数据通过上位机进行处理,以控制并监测设备的运行情况,减少不必要的线路设备开支。   1 系统组成框图   本文设计的多路无线温湿度检测系统将单片机检测控制系统和射频通信系统相结合,系统由主机和从机两部分构成,从机负责检测温湿度,并
[单片机]
基于nRF24L01的无线<font color='red'>温湿度</font>检测系统设汁
基于ZigBee无线传感网络的SMT厂房温湿度监控系统设计
电子电路表面组装技术(SMT)是一种将片式组装元器件安装在印制电路板的表面,通过回流焊等方法加以焊接组装的电路装连技术,是目前电子组装行业里最流行的一种技术和工艺。随着电子技术的进步,电子元器件逐渐向小型化、精密化、多功能方向发展,元器件的精密程度的提高对电子组装的环境要求的越来越苛刻。生产环境不合适的温度和湿度不但会对电子元器件的组装造成危害,而且还会影响SMt机器设备的正常运行,所以,对SMT厂房温度和湿度自动化的实时而准确的监测和控制,使厂房实时处在一个良好的生产环境,对设备运行和SMT产品质量保障都有着重大的现实意义。 传统的SMT厂房的温湿度监测系统常常采用有线方式,其优点是可靠稳定,明显的缺点是布线困难,组网不灵
[单片机]
基于ZigBee无线传感网络的SMT厂房<font color='red'>温湿度</font>监控系统设计
基于网络的温湿度监控传输系统的设计
本文通过比较和方案论证,确定了一种新型的基于网络的温湿度监控系统,即将所采集的一个或多个温湿度传感器测量结果通过Intemet以网页的形式动态发布,同时,任意一台上位机都可以根据管理员的授权通过网络对温湿度控制装置下达指令,对任一节点进行控制。对于这种方案,能接入Intemet的任何一台PC机可以实现对各个传感器工作状态的监控与管理,实现了无距离限制的测控网络,非常方便灵活。 1 系统总体结构 该系统总体结构如图1所示,各个温湿度测试控制模块都带有网络接口,通过路由器与中心服务器相连。中心服务器包括IIS信息服务器系统和SQL数据库服务器,前者负责与处于联机状态的温湿度测试节点通信获取温湿度测量结果,然后通过Intemet以网
[模拟电子]
基于网络的<font color='red'>温湿度</font>监控传输系统的设计
基于modbus协议的空间分布式温湿度测控系统设计
0 引言 目前,大型基地(比如仓库)对其空间内部的温度和湿度参数非常关注,因为这直接关系到其中储存的设备是否能够无腐蚀、完好的被保存。因此,能够自动测量空间内的温湿度并在需要的时候开启风机以控制温湿度是很有必要的。本文提出用分布式系统结合Modbus协议来高稳定高可靠地收集数据,同时在PC机上利用ACCESS的强大功能分析和处理数据并发出风机指令,从而实现温湿度的自动测控。 1 系统构成 该温湿度测量控制系统属于传感器空间立体分布式测控系统,采用PC主机和一台上位机、以及若干台下位机来实现主从式通信,同时使用RS485通信方式并采用Modbus协议组成工业级485网络,然后再加上风机、打印机等。从而构成一套完整的系统来实
[工业控制]
基于modbus协议的空间分布式<font color='red'>温湿度</font>测控系统设计
STM32小白入门(第九天)-------温湿度模块
型号:DHT11,测量范围在温度0-50度,湿度20-90%RH,4针单排直插式 注意事项: 1.如果想去跟踪温湿度代码跑到哪个位置,禁止使用串口打印输出,因为你们使用115200bps的时候,每打印一个字节都占用86us,会导致温湿度的检测超时。 开发板总共有4盏LED灯,代表16种状态,因为IO口速度是100MHz,所花的时间是10ns。
[单片机]
STM32小白入门(第九天)-------<font color='red'>温湿度</font>模块
STM32+SIM800C采用MQTT协议登录OneNet上传温湿度、MQ2烟雾浓度、GPS数据
一、环境介绍 MCU: STM32F103C8T6 GSM模块: SIM800C 开发软件: Keil5 MQTT协议采用OneNet的旧版协议,登录OneNet控制台创建应用时要选择旧版本。 如果想使用新版本的标准MQTT协议连接OnetNet请参考这里: https://blog.csdn.net/xiaolong1126626497/article/details/107385118 完整源代码下载: https://download.csdn.net/download/xiaolong1126626497/18245757 二、硬件与需求 一块STM32F103C8T6最小系统板。 一块OLED
[单片机]
STM32+SIM800C采用MQTT协议登录OneNet上传<font color='red'>温湿度</font>、MQ2烟雾浓度、GPS数据
基于隔离和网络技术的新型高精温湿度测量仪表
本文描述的是一种支持实验室温度湿度进行测量、显示并远传的智能化仪表。本仪表不同于市场上众多同类产品,他可以很好地满足现场高精度、高分辨率及网络传输的要求。 l 温湿度显示仪的硬件设计 本仪表的硬件电路部分主要是有温、湿度通道独立电源电路,温、湿度采样电路,信号调节电路,模数转换电路,光电隔离电路,处理器采用AT89S52单片机,同时还有LED显示电路,通讯电路,键盘电路等构成,其结构图如图1所示。以下将对各部分的电路做相应的介绍。 1.1 温度湿度变送器 非电量的温度湿度信号通过变送器形成4~20 mA电量信号。本方案中采用了奥地利E+E公司的EE10-FT6的高性能温湿度综合变送器。 EE10一FT6产品特点:
[应用]
STM32—驱动DHT11数字温湿度传感器
DHT11模块简介 DHT11数字温湿度传感器,用来测量环境的温度和湿度,而且传输的数据是数字信号,这与DS18B20传输的模拟采集的数据不一样,相比DS18B20而言DHT11的数据采集的处理更加精确,而且驱动也更加方便。 DHT11传感器包括一个电阻式测湿元件和一个NTC测温元件,而且传感器中嵌入一个8位单片机。传感元件测量到数据后经过内嵌MCU处理后,能够直接输出处理好的数据。 DHT11与单片机之间采用单总线通信,只需要初始化一个I/O口即可实现温湿度的实时测量。 其相关参数如下: DHT11数据传输 DHT11数据传输是单总线通信方式,即通过一个IO口完成数据的双向输入输出,DHT11每一次向单片机传输数据是
[单片机]
STM32—驱动DHT11数字<font color='red'>温湿度</font>传感器
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved