贴片机又称“表面贴装系统”(Surface Mount System),是一种通过移动、吸取、安放动作把表贴元件精准放置在指定位置的一种自动化设备。在实际生产线中,先由点胶机对PCB板进行点胶操作,然后由贴片机进行贴装操作,最后由回流焊机焊接,完成整个PCB板的焊接任务,是SMT流水线中不可或缺的一环。目前发达国家垄断了贴片机的主要领域,我国的贴片机产业完全靠进口。而且在实际生产中,国际上的自动贴片机虽然效率与精度最高,但大都造价昂贵,功能单一,适用于大型企业。而手动贴片机造价低廉,但效率极低,精度取决于操作者得水平,且无法解放双手。
本文以STM32F103RBT6为主控芯片,设计了一种适应于个体经营者、学校实验以及科研制板等领域的自动贴片机,既能解放双手,增加效率,又能不失精度,价格适中。
1 贴片机模块设计方案
本文将贴片机模块化的进行设计与编程,模块化后的整机系统由3个部分组成:机械传动系统、机器视觉系统和运动控制系统,如图1所示。
1.1 贴片机机械传动系统的设计方案
1.1.1 贴片机X轴Y轴设计方案
本方案采用X—Y轴两轴联动,Z轴独立运动的设计方案。其中X-Y轴由步进电机通过同步带传动进行机械运动。具体实现结构如图2所示。
如图所示,Y轴步进电机固定于底座上,带动同步带轮旋转,同步轮带动同步带做直线运动,光轴滑块与同步带相连。从而跟随同步带演光轴导轨做Y轴方向的的运动。X轴整体机构与Y轴相似,提供X轴方向上的直线运动。其整体固定与Y轴滑块之上,当Y轴运动时同时带动X轴运动。从而实现X—Y两轴联动。
1.1.2 贴片机Z轴设计方案
本设计方案中Z轴由舵机、光轴导轨、吸笔、拖拽针、摄像头组成。其结构如图3所示。
其中吸笔由空心轴步进电机制作而成,当步进电机旋转时,带动吸笔吸盘选择,从而提供了贴片机旋转轴的运动。旋转吸笔用于改变元器件贴装方向。拖拽针与吸笔固定在同一直线上,用于拖拽料盘,从而实现送料功能。拖拽针与吸笔分别固定在2组光轴导轨上,底部安装有弹簧,用于拖拽针与吸笔复位。舵机控制压杆左右旋转,从而压动吸笔与拖拽针进行向下运动,当压杆处于中间态时,弹簧将吸笔与拖拽针
弹起,回到初始位置。摄像头安装在工作台上方,用于俯视PCB板。
1.2 机器视觉系统设计方案
本方案采用两台CCD相机、环形LED光源及图像处理设备组成。其中一台CCD相机安装在贴片机Z轴上。与贴装头一起运动,用于俯视PCB板,采集各定位点坐标信息,计算X—Y轴运动偏移量,辅助定位。另外一台CCD相机固定在工作台上,向上仰视。当贴装头吸取原件后,运动至相机上方,相机采集元器件图像。计算旋转角度偏移量及X—Y轴运动偏移量。环形LED光源提供相机采集图像时的背光,提高成像质量。计算机用于处理采集到的图像数据,分析计算后将控制指令传送至运动控制系统。
1.3 运动控制系统设计方案
运动控制部分由软件系统与硬件设备组成。其中软件部分分为上位机及下位机。上位机即计算机。下位机采用STM32F103RBT6微控制器作为核心控制器。上位机与下位机由串口数据线连接。硬件设备由步进电机、步进电机驱动器、舵机、电磁阀等组成。[page]
运动控制系统工作流程如图4所示。
2 运动控制系统硬件设计
2.1 运动控制系统结构
贴片机控制系统模块所完成的主要任务是,在上层控制器的控制下,对步进电机驱动器进行控制,使各轴能够进行“受控运动”,实现运动控制系统所需求的各轴起制动、正反转、调速和保护等功能。
控制系统的控制模式是以PC机为平台、以微控制器为核心协调工作。通用PC机负责数控程序编辑、人机界面管理等功能;微控制器用来管理子程序以及负责机械本体的运动控制和逻辑控制,支持用户的开发和扩展,并具有上、下两级的开放性。
本设计方案采用STN32F103微控制器作为核心器件,协调3个步进电机驱动器控制步进电机的运行。同时获取编码器数据,限位开关状态,并控制舵机、电磁阀等器件的运行。各器件连接图如图5所示。
本设计方案所采用的主控芯片STM32F103RBT6是一款基于ARM Codex—M3内核的32位处理器,具有杰出的功耗控制与众多外设。该芯片内置128K FLASH、20K SRAM、2个SPI、3个串口、1个USB、1个CAN、2个12位的ADC、RTC、51个可用IO口。其电路图如图6所示。
数据由上位机即PC主动发送,下位机即单片机被动等待接收,系统在每次上电初始化时进行一次握手,下位机在接收到的包头数据中匹配自己的器件地址,一致时则接收命令,否则将收到的数据包抛弃。当上层控制器向单片机发送读数据指令r(0x72)时,其数据位均为0;单片机收到指令后,将状态信息填入数据位,回发给上位机。当上位机向单片机发送预设参数w(0x77)数据包时,将参数信息填入相应数据位;单片机收到后,将数据写入EEPROM中并发送反馈,反馈帧以同样的类型、将存好的数据再次读出填入数据位,发送给上位机进行匹配校验。当上位机向单片机发送运动指令m(0x6D)时,将数据位按设定的格式填入数据位;单片机读取并按照指令内容进行运动。
单片机正确接收到除预设参数之外的数据时向主机回发正常返回指b(0x62);若收到上一组主机的数据后发现数据出错,则请求重发指令c(0x63),主机接收到此回应指令后执行重发操作;若连续通信错误并超过最大限制后则发送的放弃指令q(0x71)。因为不涉及有效数据,所以这三种指令的起始地址、数据长度、有效数据均为0。
4 结束语
本文根据目前贴片机市场上的应用现状,提出了低成本,小型化的设计方案。对贴片机整机的机械结构进行了优化设计。分别对贴片机的机械传动系统,机器视觉系统及运动控制系统给出了设计思路。针对运动控制系统,设计了具体的硬件与软件实现方案,并对整机工作过程进行详细说明。本文设计的贴片机运动控制程序经过调试,达到了预期目标,现已在学校实验室的应用中取得了不错的成果。
上一篇:基于S3C2440处理器和WinCE的智能车载仪表设计
下一篇:基于STM32F407的永磁同步电机伺服控制器设计
推荐阅读最新更新时间:2024-03-16 13:41