基于MSP430FR 系列MCU 的多功能双接口存储器设计

发布者:幸福家庭最新更新时间:2014-10-13 来源: 21ic关键字:MSP430FR系列  MCU  存储器 手机看文章 扫描二维码
随时随地手机看文章

本文介绍了一种基于TI 新一代MSP430FR 系列MCU 来实现多功能双接口存储器的方法。相比传统存储器 (例如FLASH,SRAM,EEPOM),FRAM集合了更多的优势,拥有更强大的功能。利用MCU 的灵活性,用户可以设计出功能强大,接口灵活的多功能存储器,用来替代传统嵌入式系统中的EEPROM和RTC 等功能。

1 前言

从2011 年起,TI(德州仪器)公司先后推出了近20 款带FRAM的MSP430 系列MCU – MSP430FRXX。与传统的MCU 相比,该系列MCU 采用新一代的FRAM替代了FLASH 和SRAM。由于FRAM具有读写时间快,使用寿命长,非易失性,功耗低,抗干扰力强等特点,可以用它来实现传统FLASH+SRAM+EEPROM 实现有困难,或功耗,速度,成本三者难以协调的应用。本文介绍的多功能双接口存储器方案,除了实现低功耗快速存储的功能外,还包括RTC,硬件看门狗,AES 数据加/解密,接口扩展等功能。

2 功能介绍

2.1 MSP430FRXX 系列

MCU简介

TI 公司最新一代MSP430FRXX系列MCU 采用了FRAM作为代码和数据存储器,替代传统MCUFLASH+SRAM 的结构,并且其FRAM带有分区管理和ECC 校验功能,增强存储器可靠性,FRAM运行时的低功耗特性,将MCU 的功耗降低至100uA/MHz。除了FRAM外与SCI/IIC/SPI/GPIO/ADC/CMP/TIMER 图2.1 MSP430FRxx 内部框图等普通外设外,其还增加了AES 硬件加解密模块,32 位硬件乘法器等,其余性能指标可详见[1]。

图2.1 MSP430FRxx 内部框图

2.2 FRAM 简介

FRAM (Ferroelectric Random Access Memory) 铁电存储器是新一代的非易失性高速低功耗存储器,和传统的FLASH/EEPROM 存储器相比FRAM具有非常明显的优势:

• 速度快-FRAM的写入时间比Flash/EEPROM快1000 倍以上, FRAM写入一个字节仅耗时50ns,而FLASH 至少耗时75us,EEPROM更是长达5ms。

• 功耗低-由于FRAM的工作电压只有1.5V,相比FLASH/EEPROM 存储器需要一个升压器把电压升到9-12V,操作FRAM的功耗仅有后者1%或者更低。

• 抗干扰力强-由于FRAM 工作仅需要很少的能量,故FRAM工作起来更加稳定,不会出现FLASH 存储器的“Data-tearing”现象。

• 耐久性强(读/写次数)-FRAM的读/写周期数为一百万亿次 (10E15) ,而通常的FLASH/ EEPROM 只有一百万次 (10E6) 。

2.3 MSP430FRXX 系列MCU中FRAM 管理器简介

为了能够充分发挥FRAM速度快,功耗低,掉电不易失,耐久性强的特点, MSP430FR5969 同时为其配置了同样强大的存储器管理单元。

MSP430FRXX 系列MCU 对FRAM的管理可分为两部分:MPU和FRAM controller。

MPU 是存储器保护单元,其可提供FRAM的分区配置和读/写/执行权限独立控制。如果发生越权读/写/执行,FRAM会受到保护,同时产生错误中断通知MCU,进行相应的操作。

图2.2 FRAM controller 与 MPU 结构图

FRAM控制器主要提供FRAM的操作方式管理,ECC 校验和Cache 功能。

ECC 校验可纠正1bit 的错误和检测2bit 以上的错误。 Cache 拥有2 个64bit 的缓冲区,当要处理的数据小于8 字节时,CPU 可直接操作Cache,提高系统效率。

2.4 多功能双接口存储器系统功能简介

本文以MSP430FR5969 为例,介绍如何设计多功能双接口的存储器,该存储器支持1 个I2C 接口,2 路SPI 接口,2KByte SRAM,AES 加/解密,硬件看门狗,RTC 等功能,两路SPI 可同时访问该存储器设备。

 

MSP430FR5969 的功能框图如下:

图2.3 MSP430FR5969 功能框图

图2.3 MSP430FR5969 功能框图

利用MSP430FR5969 丰富的外设,强大的运算能力和FRAM的存储特点能设计出功能强大的多接口存储器,其特点包括:

• 64KByte FRAM 非易失性存储器 (代码大约占用8KByte FRAM空间);

ÿÿÿÿÿÿÿÿÿÿ• 2KByte SRAM掉电不保存存储器 (程序占用大约1KByte SRAM);

• 支持一个I2C 接口访问,最大支持速率为100Kbps;

• 最大支持2 路SPI 接口同时访问;

• 支持8 路GPIO 扩展功能,提供上升/下降沿中断接口;

• 支持128-Bit、192-Bit、256-Bit 硬件AES 加密/解密模块;

• 独立的RTC 模块,提供实时时钟;

• 2 路看门狗定时器输出;

• 可编程电压检测器;

2.5 多功能双接口存储器系统典型应用简介

与传统的双接口存储器相比,使用MSP430FRXX 实现的双端口存储器不仅可实现非常高的数据吞吐率(最高到125Kbyte/s),同时提供数据加密,增加其传输的安全性。存储器的擦写寿命也可从一般的十万次提高到一百万亿次,动态功耗也从2mA 左右下降到100uA 左右。

 

如下图所示,是双接口存储器应用的典型系统,使用MSP430FRXX 实现后,存储容量可从典型的2Kbyte 扩展到48Kbyte。同时除了实现外部的双端口存储器,还可以将加密芯片,外部RTC,外部WDT 等功能集成在一起实现,使系统结构更优化,更简洁。

图2.4 双接口存储器应用场景示意图

图2.4 双接口存储器应用场景示意图

除了上文所述的典型双接口存储器应用之外,使用MSP430FRXX 系列MCU 设计的系统还可以同时提供替代存储,增强系统Watchdog,RTC,数据加密等功能。故本文同时发现在许多其他的应用中同样可以使用该方案,提高系统的集成度,优化系统的硬件设计,提高系统软件的灵活性。比如模块化的数据采集与发布系统,以及基于BLE 的快速数据传输系统。

 

正如下图所示,其是一个典型的模块化数据采集与发布系统。整个系统分为主控制板,前端数据采集或发布板,人机交互板和无线数据传输板组成。由于这种模式的应用(例如,工业现场多种探测器数据采集系统,分布式广播信息发布系统等),有一个重要的特点,系统的功能配置需要根据实际环境的需要,能够灵活的调整模块种类,增减模块数量。故通常在工程上,会将其高度模块化,各个模块均用同一的串行总线(UART,IIC 或者SPI 等)进行通信。

图2.5 模块化的数据采集与发布系统

在主控板上,均需要多个串行接口的MCU(通常要求支持到8 个UART/IIC/SPI 及以上),同时有数据加密的要求,外部RTC 支持,外部看门狗等,以及EEPROM存储自身和外接模块配置信息。此时便可以使用MSP430FR59XX 系列MCU+一颗拥有多串行接口的MCU 实现主控制板的功能,优化系统的设计。

在无线数据传输板上,其同样需要EEPROM存储模块配置信息的数据和数据加密功能,同时其一般要求有32KB-64KB 的缓存,由于内置RAM32KB-64KB 的MCU 通常在此板上性价比不高,通常会使用外扩RAM 或者FIFO 实现,现在也可通过使用MSP430FR59XX 系列MCU 将这四个功能进行整合,在提升系统功能的情况下,简化系统设计。

在人机交互板上,主要部分是LCD 及按键和LED 的控制支持,同时需要EEPROM存储模块信息数据。此时便可以使用MSP430FR57XX 系列MCU 简化系统的设计,而且FRAM可当做SRAM 使用的特性,还可以根据需求合理分配FRAM的数据/代码/存储等空间。

在前端数据采集或发布板上,因为其需要有经常性的数据擦写操作,故其需要的MCU 特点是代码量不大,但是临时数据量很大,故通常要求MCU 的FLASH 在32KB 左右,而RAM 需要16KB-23KB,在这种情况下,一般基于FLASH 的MCU 很难进行选型,此时MSP430FR59XX 系列MCU 可以非常好的解决这个问题,同时还可以省去外部存储模块信息的EEPROM。

 

通过优化后的系统框图如下图所示,可以看出使用MSP430FRXX 系列MCU 后,系统的硬件设计得到了优化,同时面对小FLASH,大RAM这样的MCU 选型难题时,获得了很好的解决;再有就是MSP430FRXX 系列MCU 自带的功能强大的RTC,数据加解密,WDT 等功能也提到了系统的集成度和性能。

图2.6 MSP430FRXX 系列MCU 模块化的数据采集与发布系统中的应用

再例如在如下所示的BLE 数据传输系统中,当数据传输量较大时,要选择一颗RAM 非常大的MCU,通常性价比不高。故通常会用到双接口的存储器,这样可以选择数据处理性能更好的MCU 加一个外接的存储器实现。如果使用MSP430FR59XX,则可以实现存储的功能外,还可以同时实现RTC 与外部WDT,提高系统的可靠性。特别是对于需要数据加密的要求时,可以不修改系统硬件,直接实现。[page]

图2.7 BLE 无线数据传输系统

图2.7 BLE 无线数据传输系统

综上可知,MSP430FRXX 系列MCU 设计的多功能双接口存储器,可广泛的应用在有快速数据传输,经常性数据擦写,以及数据加密要求的应用中。其不仅可发挥FRAM速度快已配置的特点,还可给系统带来RTC,外部看门狗,数据加解密等功能。其为系统提供了强大的数据存储吞吐能力,优化了系统硬件设计,增强了系统扩展功能,解决了小FLASH,大RAM 的MCU 选型等问题。

3 系统设计

3.1 系统框图

基于MSP430FR6969 MCU 设计多功能双接口存储器的系统框图如下:

图3.1 基于MSP430FR5969 的多功能存储器系统框图

图3.1 基于MSP430FR5969 的多功能存储器系统框图

• 配置内部数字振荡器(DCO)工作在8MHz 最高主频,为MCLK,SMCLK 分别提供8MHz 的时钟源;

• 配置eUSCI_A0,eUSCI_A1 分别工作在SPI 接口从模式,采用MCLK 作为时钟源,最大支持1Mbps 的通信速率;

• 配置eUSCI_B0 工作为I2C 接口从模式,7-BIT 地址,MCLK 时钟源,最大支持100Kbps 的通信速率

• 配置2 个DMA 通道从FRAM存储器传输数据到eUSCI_A0 和eUSCI_A1,实现SPI 接口的数据的接收,无需CPU 参与;

• 配置1 个DMA 通道从FRAM存储器传输数据到eUSCI_B0,实现I2C 接口的数据的接收,无需CPU 参与;

• Port3 配置为GPIO 扩展端口,支持上升/下降沿中断;

• 使能硬件AES 加密模块,实现AES 加密/解密功能;

• 使能TIMERA0 工作在连续模式,利用CCP0 和CCP1 实现2 路WDT 定时器输出;

• 使能ADC 模块,配置TIMERA1 工作在定时器模式触发ADC 采样,实现电压检测功能,最大支持2 个电压点的检测;

• 使能RTC 模块,实现RTC 功能。

3.2 管脚定义

按照3.1 的功能规划,选择40QFN 封装的MSP430FR5969,可对其管脚分配如下。

• 图3.2 MSP430FR5969 引脚分配

• 图3.2 MSP430FR5969 引脚分配

3.3 存储器分配

MSP430FR5969 片上支持64Kbytes 的FRAM存储器,其寻址范围为:

0x4400~0x13FFF; 由于MSP430 的复位地址为0xFFFF, 故该地址和中断向量表

把存储器分为两部分: 0x4400~0xFF7F, 0x1000~0x13FFF。

 

在本文的设计中按照下表来分配FRAM存储器:

根据上表的存储器空间规划可得出存储器分配图,如下图所示:

搜狗截图20141009171617.jpg

图3.3 MSP430FR5969 FRAM 存储器分配

MSP430FR5969 的SRAM 存储器容量共有2kBytes,其寻址空间为0x1C00-0x23FF,划分出1K 作为AES 加密/解密模块使用,具体的RAM 空间划分如下:

具体的SRAM 空间功能划分如下图所示:

图3.4 MSP430FR5969 SRAM 存储器分配

3.4 功能模块配置

 

MSP430FR5969 实现的多功能双接口存储器的各个功能都可以进行使能和配置,其配置参数保留在0xF800~0xFF7F 功能模块配置区。配置寄存器规划如下表:

3.5 系统配置寄存器

 

功能模块使能寄存器:FUNCITON_EN,基地址0xF800,偏移地址0x0000。该寄存器用来定义本设备使能的功能模块,共16BIT,低8BIT 表示功能模块的使能/关闭。

3.6 I2C 接口说明

系统支持1 路I2C 接口访问。I2C 接口数据格式为7BIT 地址,8BIT 数据,START 信号后的一个字节是设备地址,后两字节为寄存器地址。该接口参照I2C 总线的读写操作规范设计,最高支持100Kbps 的通信速率。

 

设备共有4 个7 位I2C 设备地址,分别对应4 个不同的功能模块,如下表所示:

各功能模块的寄存器描述详见各功能模块的介绍,I2C 设备地址可根据需

要按照I2C 协议规范规定的器件地址规则更改。

3.7 SPI 接口说明

系统支持最多2 个SPI 接口同时访问,接口SPI0 初始化为开启,接口SPI1可由用户开启或者关闭。

SPI 接口由9 个基本命令字进行操作控制,这9 个基本命令字可以通过SPI总线控制系统。SPI 模式为CS 下降沿启动,MOSI/MISO 上升沿采集,MSB。则MOSI 引脚上数据的第一个字节为命令字,后续字节为数据。

 

命令字的长度为一个字节,根据其意义与操作不同,后续会有跟随地址字节,数据字节和伪字节。所有的传输必须在CS 引脚的上升沿之前完成,所有的读命令都可以在任意时钟位完成,所有的写、编程、擦除命令在一个字节的边界后才完成,否则命令将不起作用。当芯片正在被编程、擦除或写入状态寄存器的时候,除了“读状态”命令,其它所有的指令都会被忽略直到擦写周期完成。SPI 操作状态寄存器S7~S0 指示当前SPI 操作的状态,用户可以通过读/写状态命令来访问该寄存器。

4 功能模块设计

4.1 铁电(FRAM)存储器

在本系统中,将MSP430FR5969 片上FRAM存储器地址的

 

0x6400~0xE3FF 共32Kbytes 范围设计成专用的FRAM存储器。将该段存储器分成8 个页面,每个页面4Kbytes。主机可以通过I2C 或SPI 访问这个区域的存储器。

4.2 RTC 模块

4.2.1 功能描述

RTC 模块实现实时时钟、日历功能,其提供一个可编程的时钟输出,一个中断输出。具体功能如下:

• BCD 格式输出秒、分、时、星期、月、年;

• 支持512HZ,256HZ 两种可编程输出频率;

•支持校准逻辑,按照+4-PPM 或-2-PPM 的步长进行精度校准。

4.2.2 RTC 模块寄存器描述

RTC 模块有16 个8 位寄存器,一个可自动增量的地址寄存器。所有16 个

寄存器设计成可寻址的8 位并行寄存器,但不是所有位都有用。当一个RTC 寄

存器被读时,所有计数器的内容将被锁存,在传送条件下,可以防止对时钟/日

[page]

历数据的误操作。RTC 模块寄存器说明见下表:(基地址 : 0xE400)

4.3 AES 加密模块

数据加密是存储应用系统的重要功能,可一定程度保护数据在存储和传输中的安全,但是由于一般加密功能都需要大量的加法,乘法,移位的数学和逻辑运算,会给系统带来巨大的性能和功耗挑战。MSP430FR5969 自带的硬件AES 模块则解决了功能与功耗的矛盾,通过硬件方式,在不增加CPU 负担的情况下,有硬件实现速度更快,并且降低系统的功耗。

MSP430FR5969 的AES 加密模块可提供128BIT 数据的128BIT,192BIT 或者256BIT 长度的密钥加密和解密(FIPS PUB 197 标准)。其加/解密性能如下表:

4.3.1 AES 加密/解密模块寄存器列表(基地址 : 0xF400)

搜狗截图20141009172713.jpg

4.3.2 AES 加密/解密模块控制寄存器(偏移地址 : 0x00)

搜狗截图20141009172751.jpg

4.4 电压检测器模块

本设备通过MSP430FR5969 内部12BIT 高精度ADC 实现电压检测功能,

TIMER1 用来定时触发ADC 转换,并根据转换结果设置相应的报警引脚。本设

计中最大支持两路电压检测。

 

4.4.1 电压检测模块寄存器描述(基地址 : 0xF000)

4.4.2 电压检测模块控制寄存器(偏移地址 : 0x00)

4.4.3 电压检测模块电压门限寄存器 VTRIPNX(16Bit)

4.5 WDT模块

本系统利用MSP430FR5969 的TIMERA0 实现一个外部看门狗功能。支持最大两个看门狗输出。 本设计中采用片上 VLO(10KHz)作为TIMERA0 的时钟源,设置TIMERA0 工作在连续模式,用户设置WDT0_VALx 来配置看门狗的周期。当TIMERA0 计数值到达WDT0_VALx 时,设置对应的看门狗输出管脚。用户向看门狗控制寄存器的写入CLR1 和CLR0 位会清除对应的看门狗计数器。

 

4.5.1 看门狗模块寄存器描述(基地址 : 0xEC00)

4.5.2 看门狗模块控制寄存器(偏移地址 : 0x00)

4.5.3 看门狗溢出周期寄存器 WDTN_VAL(32Bit)

5 软件设计

基于MSP430 FRAM系列MCU 实现多接口存储器的软件设计分为两部分

进行,软件流程设计和代码实现。

 

5.1 软件流程图

根据上文所述的系统功能规划和详细设计,以及软件流程图,可以容易实现系统功能,故实现的C 代码在本文中就不详细描述。若对本文所述的方案和内容感兴趣,请联系德州仪器半导体获得进一步支持。

关键字:MSP430FR系列  MCU  存储器 引用地址:基于MSP430FR 系列MCU 的多功能双接口存储器设计

上一篇:一种高效率的定时器管理模块设计
下一篇:例说单片机数据通信之单总线数据传输

推荐阅读最新更新时间:2024-03-16 13:42

Atmega128单片机的RC5和RC6算法比较与改进
引言 在无线局域网中,传输的介质主要是无线电波和红外线,任何具有接收能力的窍听者都有可能拦截无线信道中的数据,掌握传输的内容,造成数据泄密。因此,对于无线局域网来说,数据的加密是关键技术之一。 AVR高速嵌入式单片机是8位RISC MCU,执行大多数指令只需一个时钟周期,速度快(8MHz AVR的运行速度约等于200MHz C51的运行速度);32个通用寄存器直接与ALU相连,消除和运算瓶颈。内嵌可串行下载或自我编程的Flash和EPPROM,功能繁多,具有多种运行模式。 依照IEEE1999年发布的802.11无线局域网协议标准,采用Atmel公司的Atmega128高速嵌入式单片机,开发无线数据传输装置。为了实现无
[单片机]
MCS-51单片机指令详解
MCS-51系列单片机指令以A开头的指令有18条,分别为: ACALL addr11 ADD A,Rn ADD A,direct ADD A,@Ri ADD A,#data ADDC A,RnADDC A,direct ADDC A,@Ri ADDC A,#data AJMP addr11 ANL A,Rn ANL A,direct ANL A,@Ri ANL A,#data ANL direct,A ANL direct,#data ANL C,bit ANL C,/bit 1、ACALL addr11 指令名称:绝对调用指令 指令代码:A10 A9 A8 10001 A7 A6 A5 A4 A3 A2 A1 A0 指令
[单片机]
基于单片机锅炉液位控制系统
设计目的 首先采用液体的导电性,以按键模拟液位,这样可以很精确的检测到液位系统,同样达到预期的目的,通过单片机系统使数码管显示相应的数字。 系统采用5个按钮模拟液位来进行由下自上的液位检测。上电复位后,各部分均初始化,P2.0、P3.5、P3.6、P3.7置高电平,报警器不发声,电机不转动,LED显示灯不亮。显示器显示0时为复位情况,当液位到达规定高度时由液体导通电路,实现按钮的闭合后,再通过1位七段LED数码管显示液位位置,做出相应的报警提示,提醒工作人员在接到自动上液报警后按时手工恢复,保证液体供应充足以及设备的安全。当液位为最低液位时显示黄灯并报警,按下复位键报警器不响,当液位为5时报警器响,提醒工作人员液位已满,此时电机
[单片机]
ST 发布新STM32G0微控制器,增加USB和CAN接口和更大存储器
意法半导体发布新STM32G0微控制器,增加USB-C全速双模端口、CAN FD接口和更大容量的存储器 中国,2021年7月8日——意法半导体 STM32G0* 系列Arm® Cortex®-M0+ 微控制器 (MCU)新增多款产品和更多新功能,例如,双区闪存、CAN FD接口和无晶振USB全速数据/主机支持功能。 对于注重预算的应用,新的STM32G050超值产品线、STM32G051和STM32G061主流产品线增加了丰富的模拟功能和最大容量18KB 的 RAM存储器,以及多达 48 引脚且售价极具竞争力的封装。 此外,STM32G0B0 超值产品线、STM32G0B1和STM32G0C1主流产品线给STM3
[单片机]
ST 发布新STM32G0<font color='red'>微控制器</font>,增加USB和CAN接口和更大<font color='red'>存储器</font>
A6_A7 GPS模块的51单片机例程
1.准备一个STC89C52最小系统板 2.烧录代码(先烧录代码后接线,防止接线后下载不了代码) 3.给模块供电,给模块开机 4.接线: STC89C52 A6&A7 GND - GND TXD/P3.1- U_RXD RXD/P3.0- U_TXD 单片机源程序如下: /********************************************************************* 作者:神秘藏宝室 本例程仅适用于在本店购买模块的用户使用,鄙视其它店铺的盗用行为 版权所有,盗版必究!!! A6模块链接
[单片机]
TOPSwitch-FX系列单片机开关电源的应用
  TOPSwitch-FX系列单片机电源集成电路,可广泛应用于各种通用及专用开关电源、待机电源、开关电源模块中。   一、能进行外部限流的12V、30W开关电源   由TOP234Y构成12V、30W高效开关电源的电路如图1所示。其交流输入电压范围是AC85~265V,满载时电源效率可达80%。交流电压u依次经过电磁干扰(EMI)滤波器(C10,L1)、输入整流滤波器(BR,C1)获得直流高压UI。UI经过R1和R2分压后接M端,能使极限电流随UI升高而降低。R1可提供电压前馈信号,当UI偏高时能自动降低最大占空比,以减小输出纹波。R2为电流极限设定电阻,所设定的Ilimit≈0.7Ilimit=0.7×1.5A=1.05A
[电源管理]
单片机按键程序设计及电路设计
    在单片机应用系统中,按键主要有两种形式:1、直接按键; 2、矩阵编码键盘。直接按键的每个按键都单独接到单片机的一个I/O口上,直接按键则通过判断按键端口的电位即可识别按键操作;而矩阵键盘通过行列交叉按键编码进行识别。下面我们以S51增强型单片机实验板的直接按键来学习单片机轻触按键在单片机系统中的应用。     S51增强型单片机实验板的4个轻触按键原理图 图 1 S51增强型单片机轻触按键原理图      一、按键时序分析     通常所用的按键为轻触机械开关,正常情况下按键的接点是断开的,当我们按压按钮时,由于机械触点的弹性作用,一个按键开关在闭合时不会马上稳定地接通,在断开时也不会一下子断开。因而机
[单片机]
<font color='red'>单片机</font>按键程序设计及电路设计
单片机的外部结构-引脚功能
简介:51系列单片机8031、8051及89c51/89s51均采用40Pin封装的双列直接DIP结构。在振荡器运行时,有两个机器周期(24个振荡周期)以上的高电平出现在此引脚时,将使单片机复位,只要这个脚保持高电平,51芯片便循环复位。复位后P0-P3口均置1引脚表现为高电平,程序计数器和特殊功能寄存器SFR全部清零。 一、教学目的:掌握单片机的引脚功能 二、教学重点:单片机的P0、P1、P2、P3口的使用和区别 三、教学步骤: (1) 单片机(AT89S51)外观 (2) 单片机(AT89S51)的引脚功能图 (3) 51系列单片机8031、8051及89c51/89s51均采用40Pin封装的双列
[单片机]
<font color='red'>单片机</font>的外部结构-引脚功能
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved