基于89C52单片机的温度监测系统设计

发布者:龙腾少年最新更新时间:2014-11-07 来源: 21ic关键字:单片机  温度检测  89C52 手机看文章 扫描二维码
随时随地手机看文章

引言

温度检测是许多行业的重要工作条件之一。

无论是粮食仓库、中药仓库,还是图书保存。都需要在符合规定的温度环境条件之中。而温度却是最不易保障的指标。针对这一情况。研制一款可靠、方便、易及时调控的温度检测系统就显得极为重要。笔者运用D1S18B20采集数字信号,通过蓝牙无线通信技术和USB接口技术。实现由89S52单片机检测控制温度的监测系统。

1 系统的结构

整个系统由采集板、通信板和PC机监控程序组成。采集板以温度监测芯片DS18B20t21、单片机芯片AT89S52和蓝牙芯片BC4为核心分时完成监听主机的命令和数据采集以及数据发送的功能。可以根据接收到的主机的命令随时改变系统的工作状态。 如图1。通信板以USB 芯片PDIUSBD12、单片机芯片AT89S52为核心,实现数据接收、数据发送,以及将采集回来的外部信号通过波形图实时显示在PC机界面上。同时把数据保存到数据库中。如图2。


图1 采集板系统框图


图2 通信板系统框图

2 系统硬件设计

2.1 采集板电路设计

2.1.1 蓝牙模块—无线接收发射电路

系统采用了CSR公司蓝牙芯片BC417143.该芯片采用Blue2.0、支持主或从模式、支持AT命令集、支持波特率为2 400到1 382 400 bps,适用于嵌入式串口传输无线的全新的模块。

值得注意的是。蓝牙芯片工作在3.3 V,而MCU工作在5 V.存在逻辑电平不匹配问题。且IO管脚无法容忍MCU的5 V逻辑电平。设计中采用了1117芯片进行电平转换输出3.3 V.蓝牙与MCU连接需经过电平限制以保证蓝牙模块正常工作 以下是蓝牙模块的电源选择方案及串口模块的引脚定义。如图3。


图3 蓝牙模块的电路原理图

在建立蓝牙数据通信时。需要先对其通信协议进行设置:

(1)UART参数设置:先设置通信协议长度,再设置波特率、硬件控制流参数。校验参数、数据位数及停止位

(2)工作模式设置:可将蓝牙模块的工作模式设置为主模式或者从模式。

(3)设置蓝牙模块名:名称是蓝牙模块在进行通信的标识之一。通过设置蓝牙模块名协议可以更改蓝牙模块名

(4)设置安全模式:蓝牙通信中的数据安全主要是有蓝牙通信时的PIN码保障的。通过设置安全模式协议。可以根据不同的需要。设置蓝牙通信的安全模式

(5)设置PIN码:设置PIN码可以保证仅有可靠的设备通过蓝牙与模块互相通信系统采用的波特率为9 600 bps.传输距离能达10 In。由于采用蓝牙做为传输。具有很强的抗干扰能力

2.1.2 采集板电路原理图

采集板电路原理图如图4。蓝牙模块主要与单片机的串行IO口连接。数字温度传感器DS18B20与单片机的P1.0口连接。继电器则与P1.2口连接。温度传感器DS18B20将温度转化为数字信号通过P1.0 El送给单片机。经单片机处理后的数据由串口传给蓝牙模块(BLUETOOTH) 也可以通过蓝牙模块接收通信板发来的指令2-2通信板电路设计通信板主要由单片机、蓝牙模块、USB模块等相关电路构成。如图5PDIUSBD12是一款性价比很高的USB器件它通常用作微控制器系统中实现与微控制器进行通信的高速通用并行接口。它还支持DMA传输此外它还集成了许多特性。包括SoftConnetTM、GoodLinkTM、可编程时钟输出低频晶振和终止寄存器集合 所有这些特性都为系统显着节约了成本。 同时使USB功能在外设上的应用变得容易。


图4 采集板电路原理图

PDIUSBD12的8根DATA引脚与单片机的PO口相连接,采用 10 k的排阻作为上拉电阻;SUSPEND是当芯片挂起状态挂起时,输出为高。[page]

与单片机的P1.1连接:INT_N是中断请求。与单片机的IN,m 连接:RD N和WR N读写选通信号分别与单片机的RD和WR连接;DMREQ、DMACK N、EOT N分别是DMA 的中断请求、DMA应答和DMA传输完成。由于没用启用DMA功能直接接高电平。RESET N是复位引脚。接单片机的P1.7;GL N是芯片的工作指示灯。接人一个LED指示灯。可以直接观察USB设备的运行状态;XTAL1和XTAL2接6MHZ.CS N为片选信号。接单片机的PI.6,A0地址线,采用I/O口模拟,接单片机P3.4:D+和D一是USB的差分数据线分别串联一个l8 Q的阻抗匹配电阻。后接USB插头上 。

蓝牙模块连接方法与采集板的连接方式相同。

通讯板的信号流程为:由采集板采集的温度数据经蓝牙模块传输到通讯板上,送到单片机上处理。通过PDIUSBD12传输到PC上进行显示保存。

单用户在PC上进行操作时,数据由PC通过PDIUSBD12传送到单片机。再经过蓝牙传输,送到采集板进行相对的响应。


图5 通信板电路原理图

3 软件设计

本系统涉及内容较多。开发环境也都不一样,对于单片机软件的开发是基于KEIL uVision 3的uVision3集成开发环境IDE是一个基于Window的软件开发平台,有功能强大的编辑器、项目管理器和制作工具。

对于USB驱动的开发采用了WinDriver9.2.1.用该软件生成所需驱动只需要USB设备插入后通过简单的几步就可以完成,同时还可以根据需要生成相应的应用程序代码。方便应用程序的开发嘲。

采集板的系统流程图如图6,通讯板的系统流程图如图7PC机应用程序则采用了VISUAL STUDIO 6.0进行开发。采用C++语言编写程序代码。由于VC具有文档类程序、对话框类程序等。可以很快地实现界面的编程。


图6 采集板程序流程图


图7 通信板程序流程图

为了将波形图实时显示。就需要重复绘制波形图。运用传统的绘图方法。会引起屏幕的强烈闪烁。现在常用的解决方法是:利用内存绘图的技术。将需显示的图形绘制在内存位图中。然后再拷贝到屏幕上。很好地解决了屏幕闪烁的问题,并且处理速度快自定义的绘图函数声明如下。在该函数内部实现了内存绘图。

void CMyusbDlg::MEM— DRAW(int ID,unsigned char m_buf,int d_ pnow,int ONDRAW,CString TXT)

在数据保存方面。本系统使用Access建立数据库。系统流程图如图8。


图8 PC机主程序流程图

当主程序开始后。初始化了USB和界面后。就创建一个新的线程,和主线程并行工作。新线程主要就是完成USB数据的读取。然后把接收到得数据存放到一个缓冲区和数据库中。缓冲区主要是供主线程显示波形时使用。数据库则供用户日后查看历史记录使用。

4 结论

提出了一种基于USB与蓝牙芯片BC417143的无线温度监测系统的设计方案。并从硬件和软件两个方面介绍了系统的设计过程。实现了对温度信息进行的无线数据采集。利用蓝牙芯片作为无线收发模块。DS18B20作为温度数据采集。USB接口芯片作为与PC机的通信接口。简化了电路设计并具有易扩展和组网的特点。

关键字:单片机  温度检测  89C52 引用地址:基于89C52单片机的温度监测系统设计

上一篇:基于单片机的程控交换机多机通信设计
下一篇:基于单片机的彩灯设计方案

推荐阅读最新更新时间:2024-03-16 13:45

16-bit MCU实现超低功耗运动检测
谐振 LC 传感器技术用于运动检测已有数年,包括流量计量以及其它低速转动检测系统等。几乎在所有情况下,推动上述传感器设计发展的共同主线都是低功耗解决方案的需求,它通常为电池供电设备的低功耗解决方案。通过模拟测量组件与独立于主 CPU 工作的状态机处理接口相结合,本文以德州仪器 (TI) 的 MSP430FW42x 系列16位MCU为例,给出超低功耗运动检测系统解决方案的清晰说明。 图 1 显示了简易旋转运动检测系统的实施。除了微控制器与显示器之外,还显示了二通道谐振 LC 传感器的配置。单一传感器仅可用于转动检测,添加了第二个传感器后,就还可提供方向信息。 图 1 MSP430FW42x 转动系统原理图 传感器原理 使用
[测试测量]
16-bit <font color='red'>MCU</font>实现超低功耗运动检测
unsigned char code table[]中的code的作用
unsigned char code table 中的code的作用是告诉单片机,我定义的无符号的字符串组放在ROM(程序存储区)里面,因为C语言中没办法详细描述存入的是ROM还是RAM(寄存器),所以在软件中添加了这一个语句起到代替汇编指令的作用,对应的还有data是存入RAM的意思。这样数据就不会丢失。 code的作用是告诉单片机,我定义的数据要放在ROM(程序存储区)里面,写入后就不能再更改,其实是相当与汇编里面的寻址MOVX(好像是),因为C语言中没办法详细描述存入的是ROM还是RAM(寄存器),所以在软件中添加了这一个语句起到代替汇编指令的作用,对应的还有data是存入RAM的意思。 程序可以简单的分为code(程序)区
[单片机]
基于51单片机的两路温度控制器的设计方案
  1.引言   目前,温度控制器存在的问题是如何缩减成本,减少功耗,温度测量的准确性和多路温度的同时显示。本方案设计的实现基于C51单片机的两路温度控制器,做到成本最低化,精确度高,两路温度的显示和控制,能在温度超出设定的最高温度时启动电风扇进行降温,在温度低于设定的最低温度时启动蜂鸣器报警,能够用户设定最高最低温。   2.系统结构   温度控制器系统包括以下几个主要部分:温度传感器,报警电路,LED显示电路,键盘控制,89C51控制部分。如图所示:   本系统设计实现:启动温度控制器后,绿灯亮起,四位LED数码显示器上前两位为温度传感器1所测的环境温度,后两位为温度传感器2所测的环境温度。   3.硬件结构
[单片机]
基于51<font color='red'>单片机</font>的两路温度控制器的设计方案
基于MSP430单片机的SLED控制系统的设计
自1971年Kurbativ等人首次制备出半导体SLED以来,SLED得到了惊人的发展。特别是近几年,其在光纤陀螺仪、光纤传感、光时域发射仪等方面得到了广泛的应用。SLED兼有LD和LED的优点,是一种自发辐射单程光放大非相干光源,具有发射谱宽、高输出功率、体积小、质量轻的特点。另外,由于其时间相干性短和空间相干性长,能有效地将光耦合进单模光纤。 对于SLED来说,其出射光功率及中心波长会随着驱动电流和管芯温度的漂移而发生变化。为了获得良好的光源性能,SLED管芯的电流和温度控制精度必须达到一定的水平。基于实现输出功率稳定、可靠,输出波长准确的目的,笔者设计了基于MSP430F449单片机的智能数字化SLED控制系统。
[单片机]
单片机的FLASH引导装载系统设计
前言 DSP系统的引导装载是指在系统加电时,由DSP将一段存储在外部非易失性存储器中的代码移植到内部高速存储器单元并执行的过程。这种方式即可利用外部存储单元扩展DSP本身有限的ROM资源,又能充分发挥DSP内部资源的高速效能。因此,引导装载系统的性能直接关系到整个DSP系统的可靠性和处理速度,是DSP系统设计中必不可少的重要环节。在装载系统中,外部非易失性存储器和DSP的性能尤为重要。FLASH是一种高密度、非易失性的电可擦写存储器,而且单位存储比特的价格比传统EPROM要低。为此,本文介绍了TMS320C6713浮点DSP芯片和SST公司提供的SST39VF400A FLASH存储器的基本特点,给出了使用该FLASH存储器设计
[单片机]
传芯片制造商Atmel正考虑出售,目前市值约为40亿美元
6月9日消息,据路透社报道,三位消息人士今天透露,微控制器制造商爱特梅尔公司(Atmel Corp.)正在考虑多种战略选择,其中包括可能出售。微控制器是一种小型处理器,可用于各种电子产品中。中等规模的半导体制造商正成为有吸引力的收购目标,其中一些企业生产的芯片面向汽车、手表等 物联网 设备,而规模更大的半导体厂商希望这种芯片能丰富自己的产品线。 想看看到底爱特梅尔有什么技术,请关注EEWORLD大学堂- Atmel教室 https://www.eeworld.com.cn/training/Atmel/ 爱特梅尔目前的市值大约为40亿美元。两位消息人士称,该公司正就自己出售事宜与投行Qatalyst Part
[半导体设计/制造]
BMP180测量海拔高度传感器单片机程序
在测量海拔高度时,传统的做法是通过测量某一高度的大气压力,再经过换算才能得到高度数据。为了测量大气压力,就得用上气压传感器,下面就来讨论一下气压传感器的应用。 气压传感器是压力传感器中的一种,它专用于测量气体的绝对压强。目前市场上能见到的气压传感器有很多种,下面就以市场上常见的Bosch公司推出的BMP180来进行讨论。BMP180不仅可以实时的测量大气压力,还能测量实时温度。同时它还具有IIC总线的接口,便于单片机进行访问。另外它的使用也很方便,不需要太多的操作就可读取到气压及测量数据。 BMP180采用强大的8脚陶瓷无引线芯片承载(LCC)超薄封装,它性能卓越,内置有校准补偿,绝对精度最低可以达到0.03hPa(0.2
[单片机]
BMP180测量海拔高度传感器<font color='red'>单片机</font>程序
单片机IO驱动继电器电路的误区
经常看见的IO管脚驱动继电器的电路如下图,8550位于继电器下方。实际使用发现,此种的连接方法8550没有工作在饱和状态,即VCE未达到手册所说明的典型值0.2V,使得继电器线圈两端电压未达到理想值,一般达到4.4V已经不错了。 采用下图,改变电阻R,测试结果如下: 1)R=2K,VCC=5V,此时VCE=0.96V,线圈电压4.04V。 2)R=4K,VCC=5V,此时VCE=1.2V,线圈电压3.8V 3)R=6K,VCC=5V,此时VCE=1.6V,线圈电压3.4V。(Ib=0.126mA,Ie=28.2mA,Ic=27.9mA,放大倍数221) 这几种情况下,8550工作在放大状态。而继电器要求8550工作在饱和区,
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved