基于LPC930单片机的双向汽车防盗器的设计

发布者:夜色迷离最新更新时间:2014-11-20 来源: 21ic关键字:汽车防盗器  LPC930  单片机 手机看文章 扫描二维码
随时随地手机看文章

     汽车目前是人类主要的交通工具,也是现代文明的标志。全世界每年汽车销量达6 000多万,保有量已超过5亿辆。用车越多被盗的汽车也越多,因此汽车防盗已成为一个重要的社会问题,它已经与安全、环保、节能三者一起被列为汽车技术发展的四大课题。

  汽车防盗设备按其结构与功能可分三大类:机械式、网络式和电子式。机械式防盗原理是用机械锁锁住汽车上某一结构,如变速器、方向盘等。该类防盗器安装简便,价格便宜,但其体积较大,且该类防盗设备只防盗不报警,无法确保防盗。网络式防盗主要依靠社会的公共网络监控车辆的行驶,如GPS定位系统、GSM或GPRS等,该类防盗器技术先进,功能强大,但价格较高,需要支付服务费,而且通信信号容易受到干扰,使防盗性能降低。电子式防盗器是目前汽车市场上最为流行的防盗装置,利用钥匙中的无线电发射芯片与车身内的ECU通信即可实现单向甚至双向报警。当汽车遭到外界侵扰时,在附近的车主能通过随身携带的钥匙上的显示屏了解汽车的状况,但其缺点是误报率较高。

  本文给出了一种基于单片机的双向电子式汽车防盗系统,由主机和遥控器两部分组成。遥控器由车主随身携带,主机置于车内检测报警信号源,自定义两者间利用无线收发模块进行半双工通信。

  1 主机的硬件设计

  主机置于车内,由MCU、电源、传感器输入、高频模块、报警输出五大模块组成,系统框图如图1所示。主控制器MCU采用LPC930,用于检测传感器的触发,并产生报警信号;同时更新遥控器的状态实现同步报警。由于传感器输入模块中需要12 V的直流电压,而LPC930工作电压在2.4~3.6 V之间,固在电源模块中利用SPX1117稳压器产生3.3 V的直流电压。声音报警控制电路采用RT0100电路,RT0100是一个可以产生单一报声的晶体电路,采用CMOS技术制造,内建RC振荡电路,工作电压为2~5 V,低静态电流。

 

主机的系统框图

图1 主机的系统框图

  1.1 传感器模块设计

  传感器模块包括边门检测电路,振动检测电路。在各种报警触发时,均导致汽车喇叭报警30 s,方向灯闪烁,车辆熄火无法启动。报警完成后,防盗系统自动回到报警前的状态。若短时间内连续检测到同一传感器被触发,防盗系统只报警4 min后自动停止报警。直到其他传感器被触发时重新检测所有检测点,此时仍检测到同一传感器被触发,再次报警4 min。

  1.1.1 边门检测电路

  在主机处于警戒状态时,用边门检测电路检测边门是否被打开。若边门被无故打开,主机便进入报警状态。检测电路如图2所示,图中A点接边门,B点接单片机。当边门关闭,由于二极管D2反向截止,B点被充电至高电平。当边门被打开,A点变为低电平,二极管D2导通,继电器开关接地,C1和R2组成的RC电路迅速放电,B点被拉为低电平,向单片机产生一个低电平信号,单片机控制报警输出电路报警。

 

边门检测电路图

图2 边门检测电路图

  C2用于过滤低电平毛刺脉冲,避免系统产生误动作。二极管D1和继电器线圈组成泄放电路,当边门被关上后,由于继电器线圈存在电感,通过D1将剩余电荷泄放。

  1.1.2 振动检测电路

  在主机处于警戒状态时,振动检测电路用于检测外界干扰是否造成车身损坏,若外界的干扰导致的车身振动超出车身所能承受的限度,主机进入报警状态。电路图如图3所示,其中A点接振动检测传感器,B点接单片机。当检测到振动时,A变为低电平,D1导通,C1和R2组成的RC电路通过D1迅速放电,使得B点迅速变为低电平。C1两端电压不能跳变,因而利用此特性将振动产生的低电平毛刺脉冲过滤,确保准确检测振动跳变信号。 

振动检测电路图

图3 振动检测电路图

  1.2 报警输出模块

  报警输出模块除了简单的喇叭跟车灯的声光报警外,还采用了熄火输出控制电路。当主机处于报警状态时,使车辆熄火,无法启动。电路图如图4所示,其中A点接熄火输出控制器,B点接单片机。当单片机输出高电平时,三极管Q1导通,A点变为高电平,产生熄火输出信号,汽车不能启动。三极管Q2起到分流保护作用。当三极管Q1射极电流超过上限时,Q2就会自动导通,避免Q1因过流而导致损坏。压敏电阻RU1起到保护Q1和Q2作用,当Q1集极电压未超过上限时,RU1不会导通,但当Q1集极过压时,RU1自动导通,避免Q1在过压时损坏。[page]

报警输出模块

图4 报警输出模块

  2 遥控器硬件设计

  遥控器部分由MCU、无线收发模块、电源、键盘、报警模块组成。以LPC930作为核心器件控制周围的各模块运行。以TDA5255为核心的无线收发模块,接收主机传来的数据并转发给LPC930进行处理。遥控器部分的系统框图如图5所示。

 

遥控器部分的系统框图

图5 遥控器部分的系统框图

  无线收发模块由天线、高频发送、高频接收、TDA5255四部分组成。TDA5255芯片是德国Infineon公司生产的有着强大功能的低功耗的FSK/ASK单片收发芯片,工作在433~435 MHz频段,具有FSK/ASK调制和解调功能。集成度高,有完整的VCO(压控振荡器)和PLL(锁相环)合成器、FSK调制器、RSSI的限制器、FSK解调器、数据滤波器、数据分割器等,减少了外围电路的设计。更重要的是该芯片具有节电模式功能,可通过不同方式设置节电模式,符合遥控器低功耗的要求。模块的系统框图如图6所示。

 

 模块的系统框图

图6 模块的系统框图

  3 系统软件设计

  3.1 主机软件设计

  主机的软件部分主要包括无线数据的传输、数据处理并回传、传感器检测、报警输出并回传四部分组成,要处理的状态和功能有20余种,并且做到实时性,能与遥控器有很好的交互性,用两个变量STATUS和D-STATUS分别来存储系统和报警的状态,根据状态来跳转,总体的流程框图如图7所示。

 

总体的流程框图

图7 总体的流程框图

  3.2 遥控器软件设计

  遥控器软件设计以按键作为第一响应,数据的接收为第二响应,除了数据的传输、报警、按键设防、解除等功能外,还需要有音乐产生、低电压检测、低功耗控制、信号强度检测等附加功能。软件设计流程图如图8所示。

 

 软件设计流程图

图8 软件设计流程图

  4 结语

  本系统以单片机为主控件,采用自定义的通信协议,实现主机与遥控器间的半双工通信,从而达到了防盗报警的功能。遥控器控制主机的状态,可与主机同步报警;主机可检测多个触发源实现主机自身和遥控器远程报警,并能完成遥控器设定的车门自动上下锁、报警自动恢复、报警紧急解除等功能。经测试,本系统具有实时性强、可靠性高、功耗低等特点。

关键字:汽车防盗器  LPC930  单片机 引用地址:基于LPC930单片机的双向汽车防盗器的设计

上一篇:基于MCU和FPGA灵活设计车载信息娱乐系统
下一篇:分布式车身控制系统实现方案

推荐阅读最新更新时间:2024-03-16 13:46

单片机系统的故障重现设计与实现
电磁脉冲辐照效应实验方法 电磁脉冲对电予系统的辐照效应实验方法,简单地说就是将被测电子系统置于电磁脉冲辐射场中,接受电磁脉冲的照射,研究被测系统在电磁脉冲照射下受干扰、损伤的情况。 实验配置如图1所示。主要由吉赫横电磁波传输室(GTEM Cell)、Marx发生器、控制台和被试系统等组成。Marx发生器用于产生高电压,与GTEM室配合,在GTEM室内产生均匀电磁场。控制台主要由示波器、光接收机和Marx控制面板组成。光接收机和电场传感器组成模拟量光纤场测量系统,主要用于将辐射电磁场转换成电压信号;示波器用来显示电场波形;Marx控制面板用来控制Marx发生器的充放电操作和陡化间隙的调整。 故障重现原理
[单片机]
<font color='red'>单片机</font>系统的故障重现设计与实现
AVR单片机在LED遥控照明中的应用
引言 LED照明已经进入了家庭用户,与传统的照明设备(如白炽灯、荧光灯)相比,具有光源单色纯度高、色彩多样、效率高、光强度可调等优点。针对传统照明亮度不易调节、开关位置固定的问题,本文基于AVR单片机设计了一种LED遥控照明系统,提出了LED照明灯的驱动与亮度调节的方法。 1 LED照明灯控制系统原理 系统原理图如图1所示。当红外接收器接收到红外遥控信号时,通过外部中断将AVR单片机从休眠模式中唤醒;AVR单片机开始解析红外信号,如果与系统地址匹配,则将根据解析到的命令改变LED恒流源驱动的输入,从而改变LED灯的状态。     2 系统硬件设计 2.1 控制器 控制器采用AVR单片机ATmega8。ATmega8是Atmel公
[电源管理]
AVR<font color='red'>单片机</font>在LED遥控照明中的应用
PIC12C508单片机灯光控制系统源程序
;P IC 12C508 单片机 灯光控制系统源程序 ;以上程序使用PIC12C508 单片机 ,内部4M Hz 时钟,4脚输入50HZ脉冲信号,7,6,3脚(GP0,GP1,GP4端口)为输出口。其中渐变部分是让灯慢慢的变亮(或灭)。不知道单片机灯光控制系统程序有没错误,有错误之处请大家多多给意见。谢谢 ;程序如下: GPI0 EQU 6 COUNT1 EQU 11 COUNT2 EQU 12 COUNT3 EQU 13 COUNT4 EQU 14 COUNT5 EQU 15 POINTER EQU 16 POINTER1 EQU 17 ORG 00H MOV LW 07H ;设定时钟参数1:256 分频 OPTIO
[单片机]
STM32F0单片机快速入门十: 用 SPI HAL 库读写W25Q128
1.W25Q128 介绍 当我们有比较多的数据需要掉电存储时,上一篇文章所介绍的 24C02 (256个字节EEPROM)就不够了。此时我们会用到另外一种类型的存储器,即 Flash。比如具有 SPI 接口的 W25Q128。这颗小芯片虽然也只有简单的 8 个引脚,但存储容量却达到了128M-bit,也就是 16M 字节,同时它的读写速度可以达到 66MB/S。但是由于 STM32F030 不支持 Quad/Dual SPI,只能以标准 SPI 方式读写,所以速度会低一些。以下是 W25Q128 的主要特点: 133MHz SPI Clock。 10万次擦写寿命,20年数据保持时间。 每颗具有64-Bit唯一序列号 Uni
[单片机]
STM32F0<font color='red'>单片机</font>快速入门十: 用 SPI HAL 库读写W25Q128
AVR单片机多路ADC转换程序
AVRAD转换使用注意: 绝对的应用经验! 1、注意采样保持时间要足够长 最少62us 2、注意AREF的稳定性 3、注意悬空的引脚无意义 4、注意切换通道后首次测量结果应该舍弃 AVR各种学习开发工具 搜索 SHOP AVRVI 给你一个tiny13写的多路AD采集的例子。 仅提供思路的主要部分,其余部分暂不方便提供,ICC编写。 程序自动采集并放入数组中,需要使用前调用GetAD将结果存到多维数组搜索的最后,四个数取平均。 volatile unsigned char time_count=0,AD_datai=0,channer=0; volatile unsigned char AD_d
[单片机]
一种基于CPLD的单片机与PCI接口设计解决方案
0 引言 8位单片机在嵌入式系统中应用广泛,然而让它直接与PCI总线设备打交道却有其固有缺陷。8位单片机只有16位地址线,8位数据端口,而PCI总线2.0规范中,除了有32位地址数据复用AD 外,还有FRAME、IRDY、TRDY等重要的信号线。让单片机有限的I/O端口来直接控制如此众多的信号线是不可能的。一种可行的方案就是利用CPLD作为沟通单片机与PCI设备间的桥梁,充分利用CPLD中I/O资源丰富、用户可自定制逻辑的优势,来帮助单片机完成与PCI设备间的通信任务。 1 PCI接口设计原理 1.1 PCI总线协议简介 这里只讨论PCI总线2.0协议,其它协议仅仅是在2.0的基础上作了一些扩展,仅就单片机与PC
[应用]
意法半导体新系列MCU STM32H5提升下一代智能应用的性能和安全性
意法半导体新系列MCU STM32H5提升下一代智能应用的性能和安全性 • 采用Arm Cortex-M33嵌入式微控制器内核,运行频率250MHz • 内置 STM32Trust TEE Secure Manager,让安全功能既强大又简单 2023年3月16日,中国 – 服务多重电子应用领域、全球排名前列的半导体公司意法半导体(STMicroelectronics,简称ST;)发布了STM32H5系列高性能微控制器(MCU)。 新系列产品引入STM32Trust TEE Security Manager安全技术,为智能物联网设备带来先进的安全功能。 新推出的STM32H5 MCU系列搭载Arm® 的C
[单片机]
意法半导体新系列<font color='red'>MCU</font> STM32H5提升下一代智能应用的性能和安全性
51单片机学习笔记———13.1DS1302实时时钟原理部分
DS1302实时时钟 芯片原理图: 引脚图: 需要注意的是,VCC1跟VCC2都外接了电容,只是容量不一样,同常备用电源VCC2的电容值是VCC1电容值的100倍,这也不难理解,如果断电,VCC2将能够提供较长一段时间的电力。 VCC1(主电源)-----------过滤滤波作用 VCC2(备用电源)--------断电时放电提供电力 X1与X2引脚接上晶振以获取实时时间 各种不同的引脚有着不一样的作用,我们在这里只介绍了一些特殊引脚,如有所需,请自行查阅官方数据手册。 DS1302内部有8个寄存器,分别掌管着秒,分,时,天,星期,月,年还有一个写入保护。 我们将依次介绍,首先看原理图: 寄存器0: “B
[单片机]
51<font color='red'>单片机</font>学习笔记———13.1DS1302实时时钟原理部分
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved