高电压多节电池组监视器实现精准电压测量

发布者:数据小巨人最新更新时间:2014-12-11 来源: ednchina关键字:电压测量  电容耦合  位移电流  高阻抗 手机看文章 扫描二维码
随时随地手机看文章

在复合材料特性检测、电路电气特性检测、人体心电检测、核磁共振等方面需要对物体表面电压进行精确测量。传统上电压的检测都需要与物体直接接触,通过传导电流来完成。该种电压测量方法无法测量空中电压的变化,即使测量物体表面电压,这种接触测量方式也有许多缺点。例如,接触测量心电信号时,电极需要利用导电膏与皮肤直接接触,容易引起皮肤过敏,造成皮肤不适;接触测量电路时延特性时,由于测量电路的接人,改变了原有电路的传输特性,从而改变了时延,使测量不准确。接触测量物体表面的电压不仅操作麻烦而且有一定的危险性。为了克服接触电压测量的这些缺点,满足对物体表面电压非接触测量的需要,文中设计了一种新型便携式电压检测系统。该系统基于电容耦合原理,前端前置电路通过运用保护、自举、有源屏蔽等反馈技术,有效地提高了其输入阻抗,从而使该系统对物体表面电压测量时相当于一个理想的电压表,不需要与物体表面直接电气接触,利用位移电流即可完成电压的有效测量。

1 非接触电压测量原理

非接触电压测量的原理类似于磁力仪测量磁场,不需要直接电气连接,通过电容耦合,利用位移电流来测量物体表面或自由空间的电压。将传感器电极放在电场中,感应电极与信号源之间将形成耦合电容,通过耦合电容信号源经过测量系统与地之间将构成一个分压电路,如图1所示。

图1非接触电压铡量原理图
图1非接触电压铡量原理图

设信号源的电压为Vs由分压公式可得,在运放输入端的电压可表示为:

非接触电压测量原理

如果传感器前置放大电路的放大倍数为Av,输入电阻和输入电容分别为Rin和Cin则传感器的输出可表示为:

非接触电压测量原理

由式(2)可知,当耦合阻抗与系统输入阻抗相比可忽略不计时,系统相当于一个具有理想特性的电压计,可有效测量电压信号。因此,为了提高系统的灵敏度,在系统设计过程中,应该采用反馈等技术提高系统前端传感器的输入电阻,降低输入电容。通过测量空中两点电压的大小,根据电压与电场的关系,可以推导出空中电场的情况。

2 系统设计

系统采用低功耗的MSP430F5529单片机作为控制器,通过敏感电极将信号以位移电流的形式采集到系统,然后进入前置放大电路,经过放大处理后输出给模数转换电路,模数电路将转换后的信号通过蓝牙无线传输给上位机进行显示。因为系统输入阻抗的大小直接关系到灵敏度,因此,在整个系统设计中,敏感电极和前置放大电路的设计是关键和难点,系统的结构框图如图2所示。

图2 非接触电压测量原理图
图2 非接触电压测量原理图

2.1 敏感电极

该敏感电极由感应层,有源屏蔽层和接地屏蔽层三层结构构成,通过三同轴电缆与后面前置放大电路连接。感应层和有源屏蔽层由直径为3.5 cm的标准双面印刷电路板构成。电路板的一面被覆铜作为感应层,感应层外围的一圈覆铜与印刷电路板的背面相连构成有源屏蔽层,最外层的金属壳作为接地屏蔽层。整个电极的直径为3.7 cm,厚度为0.5 cm.电极的结构如图3所示。

圈3 电极结构圈
圈3 电极结构圈

2.2 前置放大电路

为了提高系统输入阻抗,有效测量空间或者物体表面微弱电压信号,在前置放大电路设计过程中采用了保护、自举、有源驱动屏蔽和接地屏蔽技等技术,结构原理图如图4所示。前置放大电路通过三同轴电缆从前端敏感电极获得感应信号,经过放大后输出给后面的信号处理电路。电路设计以高性能的静电型运算放大器AD549(图中A1)为核心,该运放具有超高的输入阻抗、极低的输入电容和低的输入噪声,完全满足非接触电压测量的需要。前置放大电路工作需要稳定的直流工作点,偏置电路能够为运放提供稳定的直流工作点,但偏置电路的引入也降低了系统的输入电阻,因此需要利用反馈技术在不显著降低输入阻抗的条件下为前置放大电路设计偏置电路。设计中考虑到R1和R2对偏置电路阻抗和噪声的影响,经过折中考虑,采用2个阻值为100 MΩ的电阻通过正反馈构成自举结构来形成偏置电路,如前置放大电路原理图所示。偏置电路的等效输入阻抗可用下面公式表示:

非接触电压测量原理

从式(3)可知自举结构的运用极大的提高了传感器的等效输入阻抗。为了减小传输线上的等效寄生电容,提高了输入阻抗,并减少了信号传输损耗。为减小运算放大器输入电容,在前置放大电路设计过程中采用了电容抵消技术,如原理图所示,电容Cf和电位器Rp构成输入电容抵消结构,该结构的运用使得运放的等效输入电容降低为:

非接触电压测量原理

式中μ是电位器的正反馈系数。

从式(4)可以看出,经过精确调节,选择合适参数,输入电容抵消结构能够有效降低运放的等效输入电容,增大系统输入阻抗。高性能运算放大器和新型反馈技术的运用使系统具有极高的输入阻抗,能够有效的耦合空间微弱电压信号。 [page]

圈4 前置放大电路原理圈
圈4 前置放大电路原理圈

2.3 控制器和模数转换

系统采用16位单片机MSP430F5529作为控制器,该单片机采用了精简指令集结构,具有较低的供电电压,并且具有3个时钟,每个时钟都可以在指令控制下打开与关闭,这些特点使其具有极低的功耗,非常适合便携式检测设备对低功耗的要求。

因为检测的是微弱电压信号,为了提高系统的分辨率,采用24位宽频带AD转换芯片ADSl271构成模数转换电路。该芯片通过单电源供电,采用外部参考电压,输入端采用差分输入。因为系统测量的是低频交流电压信号,为了使信号满足AD转换芯片输入端电压的要求,在模数转换之前设计了一个电压提升电路。该电压提升电路由差分驱动芯片AD8131构成,其作用是将测量到的交流信号叠加一个2.5 V的直流偏移。叠加2.5 V的直流偏移不仅使信号满足了芯片输入端对电压的要求,而且增大了电压的测量范围。

2.4 软件设计

系统采用模块化程序设计,使用了多个子程序,包括AD初始化程序、延时程序、软件滤波程序、无线传输程序、上位机显示程序等,完成了信号采集、信号处理、信号传输,信号显示等功能。系统流程图如图5所示,主控制模块负责协调控制整个系统的运行,采用调用原则将需要的模块调入运行;AD转换模块负责完成信号的模数转换;无线传输模块完成单片机与上位机的信号传输;上位机显示模块完成信号的初步处理及显示。

图5前置放大电路原理图
图5前置放大电路原理图

3 测试结果及分析

为了对系统性能进行测试,文中设计了一种电压测试平台,如图6所示。该平台主要由聚四氟乙烯支撑架、铝金属板、绝缘支撑板三部分组成。聚四氟乙烯三根支撑柱上设计了多个等距离的间隙,用于放置极板和支撑板,并且方便板间距离的计算。以2片直径为80 cm的圆铝金属板作为电极极板,连接到信号发生器两端,用来产生电场。图中中间3片是绝缘支撑板,测量时将感应电极粘附在支撑板上,因此支撑板到极板的距离就是测量电极到极板的距离。将两极板相距30cm,上极板接信号发生器正电压输出端,下极板接负电压输出端并接地,感应电极距离上极板为25 cm,在两极板上加一个幅值为500mV,频率为2 Hz的正弦信号,测得的波形结果如图7所示。由图中可以看出,利用该系统通过非接触方式可以测得波形清晰,将测得的数值乘以标定系数后能够反映极板的电压。通过改变极板间不同的电压,可以测得系统的灵敏度和线性度。

图6电压测试平台
图6电压测试平台

图7测试结果图
图7测试结果图

4 结束语

文中对基于电容耦合原理的非接触电压检测方法进行了阐述,重点介绍了具有超高输入阻抗的前置放大电路设计,完成了包括敏感电极和信号处理、传输、显示等模块在内的系统设计。该系统结构简单、灵敏度高,频带宽,实现了对电压的非接触测量,在医疗、安全、无损检测、人机交互等方面拥有广阔的应用空间。

关键字:电压测量  电容耦合  位移电流  高阻抗 引用地址:高电压多节电池组监视器实现精准电压测量

上一篇:对国内C语言教材的一点感想
下一篇:教你如何高效编程之头文件书写

推荐阅读最新更新时间:2024-03-16 13:48

数字万用表测量交流电压注意事项
(1)如果不知被测电压范围,可先将量程开关置于最高挡,再视情况逐渐把量程减小到合适位置。测量完毕,应将量程开关拨到最高电压挡,并关闭。 (2)如果显示屏只显示“1”,其他位均消失,这时应选择更高的量程。注意:不能带电切换量程挡位。 (3)数字式不得用于测量高于700v(有的万用表为750v)有效值的交流电压,否则会损坏万用表的内部线路。 (4)测量较高交流电压应特别注意安全,避免触电。 (5)当误用交流电压挡去测量直流电压,或者误用直流电压挡去测量交流电压时,显示屏将显示“000”,或低位上的数字出现跳动。此时应立即停止测量。
[测试测量]
基于LabWindows /CVI的电压闪变测量研究
  0 引言   电力系统中具有冲击性(快速变动)功率的负荷会引起电网电压的波动和闪变,引起许多电工设备不能正常工作.严重影响电网的电能质量。因此,对电压波动和闪变的准确测量显得越来越重要。   国际电工委员会(IEC)给出了闪变测量和评估的国际统一规范,但IEC并未给出其具体实现方法。本文应用 虚拟仪器 开发平台LabWindows/CVI开发了基于IEC闪变测量原理的闪变测量模块,经验证测量精度完全满足IEC标准。   1 IEC闪变测量原理   IEC推荐的闪变仪原理框图如图1所示。输入量为电压信号,经过框1至框4的 滤波 器处理后获得输出信号瞬时闪变视感度S(t),该信号反映了电压波动引起灯光闪烁对人视觉的
[测试测量]
示波器测量交流电压电压中的交流分量方法
在多数情况下是测量波峰与波峰之间的数值,或者是测量波峰到某一个波谷之间的数值。通常情况下,测量交流分量电压,应将输入“选择”开关放在“ac”位置,将被测信号上的直流分量隔开。否则,当直流分量电压的叠加超过偏转放大器的线性偏转范围时,得到的将是不准确的结果。但在测量重复频率极低的交流分量电压时,应将输入“选择”开关放到“dc”位置,否则将由于频率响应的限制,使所测电压的结果不真实。 测量方法可按以下步骤进行: (1)根据坐标中(单位厘米)读出从正峰降到负峰y轴偏转的距离。 (2)根据输入偏转因数“v/cm”旋钮所放的位置,用每厘米偏转电压值乘以峰峰间的y轴偏转距离。 (3)把以上乘得的数值再乘以所用探极的衰减因数,即得到实际的峰
[测试测量]
关于发光二极管测量直流电压的步骤
在电子制作中,常常用万用表测量电路中的电压和电流。 将发光二极管和电阻、电位器接成的电路,旋转电位器使发光二极管正常发光。发光二极管是一种特殊的二极管,通人一定电流时,它的透明管壳就会发光。发光二极管有多种颜色,常在电路中做指示灯。我们将利用这个电路练习用万用表测量电压和电流。 一、测量直流电压 以Jo411型万用表为例。测量步骤是: 1.选择量程。万用表直流电压档标有“V”,有2.5伏、10伏、50伏、250伏和500伏五个量程。根据电路中电源电压大小选择量程。由于电路中电源电压只有3伏,所以选用10伏档。若不清楚电压大小,应先用最高电压档测量,逐渐换用低电压档。 2.测量方法。万用表应与被测电路并联。红笔应接被测电
[测试测量]
关于发光二极管<font color='red'>测量</font>直流<font color='red'>电压</font>的步骤
用于阻抗电路的低失真、低噪声放大器
噪声及失真特性得到改进的低噪声放大器品种繁多,已无须用分立元件制作了。此外,也有为了使噪声减到最小而降低源极 电阻 ,同时输入端的偏流IR又比通用OP放大器还大的OP放大器(如NE5534等)。但是,有时很难在高输入阻抗 电路 中使用这些放大器。 本文提供的电路是在低失真、低噪声OP放大NE5534A的基础上加分立元件、并把输入偏置电路作成FET差动电路,使失真和噪声均降到很小。另外,输出电路电路为推挽式,可以使 驱动 更低的负载电阻。 电路工作原理 在输入级使用了双FET,以求减少偏流,实现高输入电阻,以满足信号源的要求,同时为了用密勒效应减少高频失真,在基极接地电路TT2及TT3中,转换成电流 控制 。由于TT4和TT5
[电源管理]
imc 发布新型绝缘测量模块--测试电压高达1500V
imc 发布新型高绝缘测量模块--测试电压高达1500V 支持电动汽车和电池性能测试应用 2022年9月14日—— 新型imc CANSASfit HISO-HV-4测量模块填补了电动汽车和电池测试市场不断增长的高电压测试需求空白 。这款新型基于CAN总线的测量模块可在高达1500V的高压环境中进行测量,为测试工程师和研发(R&D)专业人员扩展测试范围。 扩展电动汽车或电池测试领域的测试能力 新模块的加入进一步丰富和增强imc CANSASfit测量模块系列!这款系列是基于CAN总线完成测试任务,并包括多款结构紧凑且设计坚固的测量模块。可用于各种实车测试或台架测试中的数据采集(DAQ),得益于内置信号调理单元
[测试测量]
imc 发布新型<font color='red'>高</font>绝缘<font color='red'>测量</font>模块--测试<font color='red'>电压</font>高达1500V
如何使用示波器测量电流电压
1.直流电压的测量 首先将y轴输入电压选择开关置于dc位置,将被测直流电压信号通过y轴探头接入ya输入插座上。这时,水平亮线在y轴方向上产生位移h,如图1所示。 该被测直流电压值就是亮线的位移格数乘以v/div在面板上的指示值(微调在校准位置)后得出的值。 如果y轴位移过大,表示被测电压很高,需加探头测量。这时测得的电压需再乘上探头的衰减倍数(通常为10)。如果y轴位移过小,可改变微调开关(v/div)的值,然后再进行测量,以求在y轴上得到一个合适的位移量。 2.交流电压的测量 首先将y轴输入电压选择开关置于ac挡,再将灵敏度开关的微调置于校准位置,然后将被测交流电压信号通过y轴探头接在ya输入插座上。这时,在荧光屏上
[测试测量]
如何使用示波器<font color='red'>测量</font>电流<font color='red'>电压</font>
电极接触电阻的测量_电极极化电压测量
电极的接触电阻的测量 测量电极的接触电阻,实质上是由测得电极与地之间的电阻,间接判断出电极与衬里层之间有无污物,给工作人员判断仪表的故障原因提供数值依据。 若两电极的接触电阻差值增大,可能是其中一只电极的绝缘性能变差;若某电极对地电阻增加,可能是绝缘层覆盖在该电极表面了;若某电极对地电阻变小,可能是有导电的堆积物附着在该电极表面或衬里层。 测量电极接触电阻时,应断开传感器的连接,并在流体充满管道时进行测量。要用同型号、同量程的数字万用表,如×100档,红色表笔应该接金属管道或接地,黑色表笔接在电极上;测量时,表笔接触端子后,应该立刻读取万用表上显示的最大值,没必要多次测量,以免因为极化现象产生更大的测量误差。 电极极化
[测试测量]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved