基于STM32的语音导览系统的设计

发布者:oplkjjj最新更新时间:2015-03-06 来源: dzsc关键字:STM32  语音导览系统  射频识别 手机看文章 扫描二维码
随时随地手机看文章
    景点语音导览主要有以下几种方式:一种是通过全球定位系统(GPS)的用户终端接收工作卫星的导航信息,从而解算出车辆的经纬度信息,进而计算出实时坐标,将其与景点坐标相比较,当车辆驶入景点一定距离范围内时,不用人工干预,系统自动播报景点语音信息;另一种是对车轮轴的转角脉冲进行计数,将计数值和预置值对比,即可确定播放时刻,达到准确播放景点语音信息的目的;第三种方案是利用无线射频识别技术,在每一个景点范围内设置一个具有唯一ID 的射频发射器,采用间歇工作方式发射信号,当旅游列车即将到达景点时,车载系统接收到射频发射器信号并解码出景点的ID 号,由系统控制自动播放对应编号的景点语音信息。由于景点自然环境的复杂性,第一种方式难以满足系统要求;第二种方式简单可靠,但旅游轨道车辆运行方向存在不确定性,其相对位置往返变化,系统的自动化程度较低且复杂度较高。本文采用第三种方案实现景点语音自动导览系统。

    本文首先介绍了系统总体结构,然后,给出了系统各主要功能模块的具体设计,并重点研究了基于ARM3核的STM32F103RBT6芯片与语音芯片ISD4004之间的SPI 通信控制和实现技术,给出了系统设计实现结果。

    最后,给出了有一定工程应用参考价值的结论。

    1 系统总体设计

    本系统结构原理设计如图1 所示。本设计利用旅游列车轨道固定的特点,在轨道沿线景点预先安装固定ID的RFID,综合考虑到作用距离、数据通信方式、可靠性、使用寿命和维护成本,选用产品433 MHz有源标签GAO C124061。其存储ID 字长32 b。由于在野外自然环境中,出现碰撞的可能性极低,所以,RFID 阅读器只需要正确可靠地获得RFID的ID值,与固定景点所对应,用以触发中断,开始播放该景点的语音信息。

    图1 中,MCU 采用STM32F103RBT6 芯片,该芯片是基于ARM Cortex-M3内核高性能、低成本、低功耗的嵌入式应用MCU。本设计选择这款的原因是看重其性价比:128 KB FLASH、20 KBSRAM、2个SPI、3个串口、1个USB、1个CAN、2个12位的ADC、RTC、51个可用I/O脚等一系列性能特征,能完全满足本系统性能要求。总结下来,STM32具有价格低、功能强、使用简单、开发方便等几个很有利的优势。ISD4004为语音录放存储芯片,根据外部控制和外围电路辅助,可随机对其进行语音录入和语音播放。系统MCU 通过RFID 阅读器获得旅游列车沿途RFID的固定ID,根据ID号所对应的预设语音数据存储位置的起始地址信息,通过对ISD4004内置的SPI端口进行控制,实现景点语音选段自动播放。

    2 主要模块电路设计

    2.1 ISD4004控制电路设计

    ISD4004系列语音芯片工作电压为+3 V,单片录放时间8~16 min,音质好。芯片采用CMOS 技术,内含时钟、抗混叠滤波器、平滑滤波器、音频放大器、自动静噪及高密度多电平非易失性存储器阵列。芯片设计是基于所有操作必须由微控制器控制,操作命令可通过串行通信接口(SPI)送入。芯片采用多电平直接模拟量存储技术,每个采样值直接存储在片内非易失性存储器中,因此能够非常真实、自然地再现语音、音乐、音调和效果声,避免了一般固体录音电路因量化和压缩造成的量化噪声和金属声。芯片ISD4004 内部结构和主要引脚功能如图2所示。

    ISD4004 内部器件控制单元设置非常便于其与STM32序列芯片的SPI进行通信设置。增设STM32多个I/O 口来作为对应语音芯片的片选端,即可实现多片ISD4004 扩展。STM32 与多片ISD4004 的接口电路如图3所示。

    STM32 和ISD4004 通过SPI 模块进行通信,两者MOSI、MISO脚对应相互连接,实现STM32和ISD4004之间数据串行传输(MSB 位在前)。通信总是由主设备STM32 发起。STM32 通过MOSI 脚把数据发送给ISD4004,ISD4004 通过MISO 引脚回传数据给STM32。

    全双工通信的数据输出和数据输入是用同一个时钟信号同步的;时钟信号由主设备STM32通过SCK脚提供。

    扩展为多片语音芯片后,语音信息的存储空间大大增加,便于扩充景点的语音信息量。

    2.2 语音录放控制电路设计

    语音录放控制电路如图4 所示。通过MCU 的I/O控制端来控制串联调整管Q3 或开关管Q1,实现系统放音或者录音。I/O 端输出高电平时实现录音,输出低电平时实现放音。

    2.3 RFID读卡器接口电路

    RFID 读卡器模块使用了Philips 的高集成ISO14443A 读卡芯片MFRC500。RFID 读卡器是一个相对独立的功能模块,其输出可通过中断状态信息和串口与外部连接。因此,系统利用STM32F103RBT6 的SPI2接口实现与RFID读卡器接口之间的数据通信,从而自动获得景点位置信息,以控制选择对应景点导览语音的播放。读卡器中断状态直接与STM32F103 的PD口I/O引脚连接;SPI2接口电路形式同图3类似。[page]

    3 主要功能软件设计

    3.1 软件初始化

    3.1.1 外设时钟的使能

    本设计中涉及的外设时钟可以通过APB2 外设时钟使能寄存器来使能。当外设时钟没有启用时,软件无法读出外设寄存器的值,返回的数值始终为0.设计中用到的PA 口、PB 口、PD 口的时钟分别通过APB2ENR寄存器的第2、3、5 位来设置,SPI1 的时钟通过APB2ENR的第12位来设置。

    3.1.2 I/O口的初始化

    本设计涉及的I/O 口包括:用于控制片选扩展的PA.3、PB.0口,需设置成开端输出模式;用于实现按键控制的PA.15(录音键)、PA.0(强制停止键)等需设置为上拉输入模式;用于实现SPI通信的PA.5、PA.6、PA.7 口,它们分别对应SPI1的SCK、MISO、MOSI口,应由软件设置这三个口为复用I/O口即第二功能;用于检测放音结束时语音芯片INT端低电平输出的PA.8和PD.2设置为上拉输入模式。

    3.1.3 外部中断的初始化

    外部中断初始化中主要完成的工作是设置I/O口与中断线的对应关系、开启与该I/O口对应的线上中断/事件以及设置中断的触发条件、配置中断分组并使能中断。本设计中,将强制停止键连接到的PA.0 口对应的中断触发条件设置为上升沿触发,对应的中断优先级最高;其余按键连接的I/O口对应的中断触发条件都设置为下降沿触发。把所有的中断都分配到第二组,把所有按键的次优先级设置成一样,而抢占优先级不同。其中,几个放音键连接的I/O口对应的中断共用一个中断服务程序,也就是多个中断线上的中断共用一个中断服务函数,在该中断服务程序里先对进入中断的信号进行区分(通过中断输入I/O口上的电平判断),再分别处理。

    3.1.4 SPI模块的初始化

    本设计中,通过对CR1寄存器的设置,将SPI1模块设置成全双工模式、软件NSS管理、主机模式、8 b MSB数据格式,并且把SPI1的波特率设置成了最低(281.25 kHz,为系统时钟的256分频),其中最重要的是SPI模块输出串行同步时钟极性和相位的配置,SPI主模块和与之通信的外设备时钟相位和极性应该一致。最后,发送0xff启动传输。

    根据ISD4004 不同相位下的SPI 总线传输时序和SPI操作时序关系,要想实现STM32和ISD4004之间的SPI通信,须将其控制位CPHA和CPOL都设置为1。

    3.2 SPI控制功能软件实现

    3.2.1 SPI1读写字节函数

    在读数据时,接收到的数据被存放在一个内部的接收缓冲器中;在写数据时,在被发送之前,数据将首先被存放在一个内部的发送缓冲器中。对SPI_DR寄存器的读操作,将返回接收缓冲器的内容;写入SPI_DR寄存器的数据将被写入发送缓冲器中。

    SPI_SR是16位状态寄存器,它的最低位为RXNE,该位为0则接收缓冲为空,为1则接收缓冲非空;SPI_SR的次低位为TXE,该位为0说明发送缓冲非空,为1则发送缓冲为空。不断地查询发送/接收缓冲区是否为空,进而实现数据的有序发送和接收。

    3.2.2 发送指令函数

    首先,语音芯片ISD4004有如下操作规则:

    (1)串行外设接口,SPI协议设定微控制器的SPI移位寄存器在SCLK下降沿动作,在时钟上升沿锁存MOSI引脚数据,在下降沿将数据送至MISO引脚。

    (2)上电顺序,器件延时TPUD(8 kHz采样时,约为25 ms)后才能开始操作。因此,用户发完上电指令后,必须等待TPUD,才能发出下一条操作指令。

    例如,从00处放音,应遵循如下时序:

    ① 发POWER UP命令;

    ② 等待TPUD(上电延时);

    ③ 发地址值为00的SET PLAY命令;

    ④ 发PLAY命令。

    器件会从00地址开始放音,当出现EOM时,立即中断,停止放音。

    如果从00处录音,则按以下时序:

    ① 发POWER UP指令;

    ② 等待TPUD(上电延时);

    ③ 发POWER UP命令;

    ④ 等待2倍TPUD;

    ⑤ 发地址值为00的SET REC命令;

    ⑥ 发REC命令。

    器件便从00地址开始录音,一直到出现OVF(存储器末尾)时,录音停止。

    3.3 中断服务程序

    录音中断服务程序流程如图5 所示。它实现的功能是在一次长按录音键时,将一个景点的语音信息录入ISD4004中以预先设定的起始地址存储空间中,松开录音键后,本景点语音内容录音停止。每个景点的导览语音存储的位置,以其起始地址为标示。起始地址的安排根据每段语音的长度决定。每个景点语音录音时需保持录音按键锁下不松开,直至本段景点语音录音结束。

    景点语音播放中断服务程序流程如图6 所示。系统在获得RFID读卡器的中断申请之后,根据读卡器接口协议,MCU经SPI2接口接收到读卡器传来的数据信息,分析出RFID所含的ID信息内容,并根据ID所对应的景点位置,即原设置的景点语音首地址,将此首地址发送到ISD4004 芯片组,并发送放音命令,即可实现对应景点事先录制好的导览语音自动播放。开始播放语音信息期间,ISD4004 的I-N-T- 端连接到了STM32 的I/O口上,不断查询它的状态。当这段语音信息放完时,语音芯片ISD4004的I-N-T- 端会置低,由此发送停止播放指令,则实现播音结束,并等待下一个RFID信息的输入和读卡器中断申请。

    4 系统调试测试结果

    4.1 录放音模块调试

    对于录音模块功能的测试,采用如下的办法:对着麦克风进行放音,用示波器观察语音芯片的输入引脚是否有信号。在语音芯片输入引脚检测到信号,如图7(a)所示。[page]

    在成功录入语音后,发送放音指令在语音芯片输出引脚得到如图7(b)所示波形。

    4.2 SPI模块调试

    在录音电路正确后,发送放音指令,在芯片对应SPI1模块功能的引脚端,可以在示波器上看到正确的时序,如图8所示。

    图8(a)是片选和时钟信号输出;图8(b)和(c)分别是不停地发送0×55,在STM32 SPI1的数据发送端MOSI和数据接收端MISO得到的波形,与实际相符。

    5 结论

    本文提出的系统结构简单、实用可靠,特别适用于山区自然景点的有轨旅游列车项目等,因而该系统具有很好的实用价值。可用于复杂环境下的语音导览系统实现结构,详细介绍了系统主要功能模块的实现技术和调试实验结果。

关键字:STM32  语音导览系统  射频识别 引用地址:基于STM32的语音导览系统的设计

上一篇:基于STM32的便携式二氧化碳监测仪设计
下一篇:基于SOPC的人脸检测系统的设计

推荐阅读最新更新时间:2024-03-16 13:54

stm32专题二十六:互补输出 死区刹车
互补输出+死区刹车 这一部分代码,主要是初始化3个结构体,包括时基结构体、输出比较结构体和死区配置结构体,要对照前一篇博客和中文参考手册中的寄存器说明来仔细看,代码如下: bsp_AdvanceTim.c #include bsp_AdvanceTim.h static void ADVANCE_TIM_GPIO_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; // 输出比较通道 GPIO 初始化 RCC_APB2PeriphClockCmd(ADVANCE_TIM_CH1_GPIO_CLK, ENABLE); GPIO_InitStructure.G
[单片机]
stm32控制4位数码管_stm32控制共阴数码管
1、stm32控制4位共阳数码管输出计数 用stm32控制4位数码管,需要用到GPIO口 PA0~PA11共12个引脚。首先我们来看看数码管的原理图。 因为是共阳所以12,9,8,6为电源输入,其他引脚均为接地,所以对于芯片来说12,9,8,6高位输出,其他设定为低位即可。 //设定下GPIO口 void GPIO_Num_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE); GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable, ENABLE
[单片机]
用<font color='red'>stm32</font>控制4位数码管_<font color='red'>stm32</font>控制共阴数码管
STM32的SWD烧录模式No Target Connected 错误的一种情况
一、问题 最近做项目第一次用到STM32F405RGT6这款单片机,之前用的是STM32F407;SMT贴片焊接,拿到板子准备烧录程序进行测试,使用的是STlink的SWD烧录模式,但是MDK弹出“No target connected”,也就是说检测不到单片机! 二、问题分析和尝试 查看了魔法棒的Debug选项中stlink的“setting”,结果如图1所示。 图1.错误状态下的SWD设备检测状态 既然显示检测不到单片机,那么首先考虑是否电路板的电源供给状态会否有错?接地是否可靠?测试结果显示正常;既然供电正常,那么是否是接线错误?检查结果显示正常;那么单片机的BOOT引脚配置呢?资料显示BOOT引脚的配置
[单片机]
<font color='red'>STM32</font>的SWD烧录模式No Target Connected 错误的一种情况
STM32学习之路-AIRCR寄存器PRIGROUP位的配置
AIRCR是NIVC配置中一个关键的寄存器.而PRIGROUP又是AIRCR中关键的位 让我们看看CM3技术手册中该为是怎么配置的 上面说得很清楚,PRIGROUP的值是代表一个从LSB左边开始的小数值.怎么理解呢?看看下面 CM3使用8bit位来设置这里, 也就是说从0-7位.在寄存器中是这样的 |7| 6| 5| 4| 3| 2 |1| 0| 当PRIGROUT 的值为111时,即为7时,就是说7位(第8位)为有效位的开始位,用数值代表就像这样 0.76543210 110(6)时,就是7.6543210 依次类推 而STM32原理和它一样,不过只是用了4bit来表示,看看下图 好,那现在来说说
[单片机]
<font color='red'>STM32</font>学习之路-AIRCR寄存器PRIGROUP位的配置<NIVC(1)>
STM32 USB软件移植注意事项 及硬件接线注意
移植了个自定义HID USB程序到STM32开发板上,成功运行,但是最近自己做的板子上(用的是F103C8T6)就不行,死活没有反应。经过几番调试终于发现问题,以下做个小结: 1.一定要保证USB时钟是48MHZ; 使用PLL作系统时钟SCLK;而USB时钟只能是SCLK的1分频或者1.5分频,要得到48MHZ的USB时钟,则SCLK只能为48MHZ或者72MHZ;由于我是用的内部晶振8MHZ,PLL时钟最大是8MHZ Div2 再倍频16 也就是最大只能到64MHZ,所以只能配成48MHZ才能满足要求;如果使用外部晶振,PLL可以直接倍频HSE 而不用Div2; 2.注意中断向量名称; 由于我使用的是Keil 里
[单片机]
STM32 485 调试
1、最近由于项目的需要,搞了下485通信。首先是单片机如何控制485收发数据。发数据就是通过串口发送数据(说白了就是串口发送),但是要注意的是485的控制引脚要拉高设置为发送模式: //通过485发送数据 void RS485_Send_Data(u8 *buf,u8 len) { u8 t; RS485_TX_EN=1; //设置控制引脚,来设置成发送模式 for(t=0;t len;t++) { while(USART_GetFlagStatus(USART2, USART_FLAG_TC) == RESET); USART_SendData(USART2,buf ); } while(USART_GetFlagSt
[单片机]
STM32定时器溢出模式计时设置
环境: 主机:WIN7 开发环境:MDK4.23 MCU:STM32F103CBT6 源代码1: 说明:定时器采用TIM2,时钟源为内部8M晶振,向上溢出模式.此定时器用在延时函数,最小可以延时1us,故没有采用中断形式定时. 初始化代码: RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM2,ENABLE); //重新将Timer设置为缺省值 TIM_DeInit(TIM2); //采用内部时钟给TIM2提供时钟源 TIM_InternalClockConfig(TIM2); timInitStruct.TIM_ClockDivision = TIM_CKD_DI
[单片机]
stm32定时器优先级
什么是优先级   优先级是具有高抢占式优先级的中断可以在具有低抢占式优先级的中断处理过程中被响应,即中断嵌套,或者说高抢占式优先级的中断可以嵌套低抢占式优先级的中断。   当两个中断源的抢占式优先级相同时,这两个中断将没有嵌套关系,当一个中断到来后,如果正在处理另一个中断,这个后到来的中断就要等到前一个中断处理完之后才能被处理。如果这两个中断同时到达,则中断控制器根据他们的响应优先级高低来决定先处理哪一个;如果他们的抢占式优先级和响应优先级都相等,则根据他们在中断表中的排位顺序决定先处理哪一个。 stm32定时器优先级   STM32 可以支持的 68 个外部中断通道,已经固定的分配给相应的外部设备。每个中断通道都具备自己
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved