uC/OSII移植步骤
1. μC/OS-Ⅱ概述
μC/OS-Ⅱ在特定处理器上的移植大部分工作集中在多任务切换的实现上,这部分代码主要用来保存和恢复处理器的现场。但许多操作如读/写寄存器不能用C语言而只能用汇编来实现。
将μC/OS-Ⅱ移植到ARM处理器上,只需要修改与处理器相关的3个文件: OS_CPU.H, OS_CPU_C.C, OS_CPU_A.ASM 。
2. OS_CPU.H的移植
1) 数据类型的定义
typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed char INT8S;
typedef unsigned short INT16U;
typedef signed short INT16S;
typedef unsigned int INT32U;
typedef signed int INT32S;
typedef float FP32;
typedef double FP64;
typedef unsigned int OS_STK;
typedef unsigned int OS_CPU_SR;
2) ARM处理器相关的宏定义
#define OS_ENTER_CRITICAL() ARMDisableINT
#define OS_EXIT_CRITICAL() ARMEnableINT
3) 堆栈增长方向的定义
#define OS_STK_GROWTH 1
3. OS_CPU_C.C的移植
1) 任务椎栈初始化
任务椎栈初始化函数由OSTaskCreat()或OSTaskCreatEXT()调用,用来初始化任务并返回新的堆栈指针STK.初始状态的堆栈模拟发生一次中断后的堆栈结构,在ARM体系结构下,任务堆栈空间由高到低将依次保存着PC,LR,R12…R0,CPSR,SPSR。堆栈初始化结束后,OSTaskSTKInit()返回新的堆栈栈顶指针OSTaskCreat()或OSTaskCreatEXT()将新的指针保存的OS_TCB中。
OS_STK *OSTaskStkInit (void (*task)(void *p_arg), void *p_arg, OS_STK *ptos, INT16U opt)
{
OS_STK *stk;
opt = opt;
stk = ptos;
*stk = (OS_STK)task;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = 0;
*--stk = unsigned int pdata;
*--stk = USER_USING_MODE|0X00;
*--stk = 0;
return (stk);
}
2) 系统Hook()函数
这些函数在特定的系统动作时被调用,允许执行函数中的用户代码。这些函数默认是空函数,用户根据实际情况添加相关代码。
OSInitHookBegin()
OSInitHookEnd()
OSTaskCreateHook()
OSTaskDelHook()
OSTaskIdleHook()
OSTaskStatHook()
OSTaskStkInit()
OSTaskSwHook()
OSTCBInitHook()
OSTimeTickHook()
4. OS_CPU_A.ASM的移植
1) 退出临界区和进入临界区代码
它们分别是退出临界区和进入临界区代码的宏实现,主要用于在进入临界区之前关闭中断,在退出临界区后恢复原来的中断状态。
ARMDisableINT
MRS R0,CPSR ; Set IRQ and FIQ bits in CPSR to disable all interrupts
ORR R1,R0,#NO_INT
MSR CPSR_c,R1
MRS R1,CPSR ; Confirm that CPSR contains the proper interrupt disable flags
AND R1,R1,#NO_INT
CMP R1,#NO_INT
BNE OS_CPU_SR_Save ; Not properly disabled (try again)
BX LR ; Disabled, return the original CPSR contents in R0
ARMEnableINT
MSR CPSR_c,R0
BX LR
2) 任务级任务切换
任务级任务切换函数OS_TasK_Sw()是当前任务因为被阻塞而主动请求CPU高度时被执行的,由于此时的任务切换都是在非异常模式直进行的,因此区别于中断级别的任务切换。它的工作是先将当前任务的CPU现场保存到该任务的堆栈中,然后获得最高优先级任务的堆栈指针,从该堆栈中恢复此任务的CPU现场,使之继续运行,从而完成任务切换。
OSCtxSw
; SAVE CURRENT TASK'S CONTEXT
STMFD SP!, {LR} ; Push return address
STMFD SP!, {LR}
STMFD SP!, {R0-R12} ; Push registers
MRS R4, CPSR ; Push current CPSR
TST LR, #1 ; See if called from Thumb mode
ORRNE R4, R4, #0x20 ; If yes, Set the T-bit
STMFD SP!, {R4}
LDR R4, OS_TCBCur ; OSTCBCur->OSTCBStkPtr = SP;
LDR R5, [R4]
STR SP, [R5]
LDR R0, OS_TaskSwHook ; OSTaskSwHook();
MOV LR, PC
BX R0
LDR R4, OS_PrioCur ; OSPrioCur = OSPrioHighRdy
LDR R5, OS_PrioHighRdy
LDRB R6, [R5]
STRB R6, [R4]
LDR R4, OS_TCBCur ; OSTCBCur = OSTCBHighRdy;
LDR R6, OS_TCBHighRdy
LDR R6, [R6]
STR R6, [R4]
LDR SP, [R6] ; SP = OSTCBHighRdy->OSTCBStkPtr;
;STORE NEW TASK'S CONTEXT
LDMFD SP!, {R4} ; Pop new task's CPSR
MSR SPSR_cxsf, R4
LDMFD SP!, {R0-R12,LR,PC}^ ; Pop new task's context
3) 中断级任务切换函数
① 该函数由OSIntExit()和OSExIntExit()调用,它若在时钟中断ISR中发现有高优先级任务等特的时候信号到来,则需要在中断退出后并不返回被中断的,的而是直接调度就绪的高高优先级任务执行.这样做的目的主要是能够尽快的让优先级高的任务得到响应,进而保证系统的实时性。
OSIntCtxSw
LDR R0, OS_TaskSwHook ; OSTaskSwHook();
MOV LR, PC
BX R0
LDR R4, OS_PrioCur ; OSPrioCur = OSPrioHighRdy
LDR R5, OS_PrioHighRdy
LDRB R6,[R5]
STRB R6,[R4]
LDR R4,OS_TCBCur ; OSTCBCur = OSTCBHighRdy;
LDR R6,OS_TCBHighRdy
LDR R6,[R6]
STR R6,[R4]
LDR SP,[R6] ; SP = OSTCBHighRdy->OSTCBStkPtr;
; RESTORE NEW TASK'S CONTEXT
LDMFD SP!, {R4} ; Pop new task's CPSR
MSR SPSR_cxsf, R4
LDMFD SP!, {R0-R12,LR,PC}^ ; Pop new task's context
② 两种形式的中断程序
OS_CPU_IRQ_ISR
STMFD SP!, {R1-R3} ; PUSH WORKING REGISTERS ONTO IRQ STACK
MOV R1, SP ; Save IRQ stack pointer
ADD SP, SP,#12 ; Adjust IRQ stack pointer
SUB R2, LR,#4 ; Adjust PC for return address to task
MRS R3, SPSR ; Copy SPSR (i.e. interrupted task's CPSR) to R3
MSR CPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode
; SAVE TASK'S CONTEXT ONTO TASK'S STACK
STMFD SP!, {R2} ; Push task's Return PC
STMFD SP!, {LR} ; Push task's LR
STMFD SP!, {R4-R12} ; Push task's R12-R4
LDMFD R1!, {R4-R6} ; Move task's R1-R3 from IRQ stack to SVC stack
STMFD SP!, {R4-R6}
STMFD SP!, {R0} ; Push task's R0 onto task's stack
STMFD SP!, {R3} ; Push task's CPSR (i.e. IRQ's SPSR)
LDR R0, OS_IntNesting ; OSIntNesting++;
LDRB R1, [R0]
ADD R1, R1,#1
STRB R1, [R0]
CMP R1, #1 ; if (OSIntNesting == 1) {
BNE OS_CPU_IRQ_ISR_1
LDR R4, OS_TCBCur ; OSTCBCur->OSTCBStkPtr = SP
LDR R5, [R4]
STR SP, [R5] ; }
OS_CPU_IRQ_ISR_1
MSR CPSR_c, #(NO_INT | IRQ32_MODE) ; Change to IRQ mode (to use the IRQ stack to handle interrupt)
LDR R0, OS_CPU_IRQ_ISR_Handler ; OS_CPU_IRQ_ISR_Handler();
MOV LR, PC
BX R0
MSR CPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode
LDR R0, OS_IntExit ; OSIntExit();
MOV LR, PC
BX R0 ; RESTORE NEW TASK'S CONTEXT
LDMFD SP!, {R4} ; Pop new task's CPSR
MSR SPSR_cxsf, R4
LDMFD SP!, {R0-R12,LR,PC}^ ; Pop new task's context
RSEG CODE:CODE:NOROOT(2)
CODE32
OS_CPU_FIQ_ISR
STMFD SP!, {R1-R3} ; PUSH WORKING REGISTERS ONTO FIQ STACK
MOV R1, SP ; Save FIQ stack pointer
ADD SP, SP,#12 ; Adjust FIQ stack pointer
SUB R2, LR,#4 ; Adjust PC for return address to task
MRS R3, SPSR ; Copy SPSR (i.e. interrupted task's CPSR) to R3
MSR CPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode
; SAVE TASK'S CONTEXT ONTO TASK'S STACK
STMFD SP!, {R2} ; Push task's Return PC
STMFD SP!, {LR} ; Push task's LR
STMFD SP!, {R4-R12} ; Push task's R12-R4
LDMFD R1!, {R4-R6} ; Move task's R1-R3 from FIQ stack to SVC stack
STMFD SP!, {R4-R6}
STMFD SP!, {R0} ; Push task's R0 onto task's stack
STMFD SP!, {R3} ; Push task's CPSR (i.e. FIQ's SPSR)
; HANDLE NESTING COUNTER
LDR R0, OS_IntNesting ; OSIntNesting++;
LDRB R1, [R0]
ADD R1, R1,#1
STRB R1, [R0]
CMP R1, #1 ; if (OSIntNesting == 1){
BNE OS_CPU_FIQ_ISR_1
LDR R4, OS_TCBCur ; OSTCBCur->OSTCBStkPtr = SP
LDR R5, [R4]
STR SP, [R5] ; }
OS_CPU_FIQ_ISR_1
MSR CPSR_c, #(NO_INT | FIQ32_MODE) ; Change to FIQ mode (to use the FIQ stack to handle interrupt)
LDR R0, ??OS_CPU_FIQ_ISR_Handler ; OS_CPU_FIQ_ISR_Handler();
MOV LR, PC
BX R0
MSR CPSR_c, #(NO_INT | SVC32_MODE) ; Change to SVC mode
LDR R0, OS_IntExit ; OSIntExit();
MOV LR, PC
BX R0 ; RESTORE NEW TASK'S CONTEXT
LDMFD SP!, {R4} ; Pop new task's CPSR
MSR SPSR_cxsf, R4
LDMFD SP!, {R0-R12,LR,PC}^ ; Pop new task's context
4) OSStartHighRdy()函数
该函数是在OSStart()多任务启动后,负责从最高优先级任务的TCB控制块中获得该任务的堆栈指针SP通过SP依次将CPU现场恢复。这时系统就将控制权交给用户创建的该任务进程,直到该任务被阻塞或者被更高优先级的任务抢占CPU。该函数仅仅在多任务启动时被执行一次,用来启动第一个也即最高优先级任务。
OSStartHighRdy
MSR CPSR_cxsf, #0xD3 ; Switch to SVC mode with IRQ and FIQ disabled
LDR R0, ??OS_TaskSwHook ; OSTaskSwHook();
MOV LR, PC
BX R0
LDR R4, OS_Running ; OSRunning = TRUE
MOV R5, #1
STRB R5, [R4]
; SWITCH TO HIGHEST PRIORITY TASK
LDR R4, OS_TCBHighRdy ; Get highest priority task TCB address
LDR R4, [R4] ; get stack pointer
LDR SP, [R4] ; switch to the new stack
LDR R4, [SP], #4 ; pop new task's CPSR
MSR SPSR_cxsf,R4
LDMFD SP!, {R0-R12,LR,PC}^ ; pop new task's context
2. 多任务应用程序的编写
1) C语言入口函数
函数Main()为C语言入口函数,所有C程序从这里开始运行,在该函数中进行如下操作:
③ 调用函数ARMTaskgetInit初始化ARM处理器
④ 调用OSInit初始化系统
⑤ 调用OSTaskCreat函数创建任务:Task1和Task2
⑥ 调用ARMTaskgetStart函数启动时钟节拍中断
⑦ 调用OSStart启动系统任务调度
#i nclude “config.h”
OS_STK TaskStartStk[TASK_STK_SIZE];
OS_STK TaskStk[TASK_STK_SIZE];
int Main(void){
OSInit();
OSTaskCreate(Task1,(void*)0,&TaskStartStk[TASK_STK_SIZE-1],0);
OSStart();
return();
}
2) 任务处理函数
① Task1
void Task1(void *pdata){
pdata=pdata;
TargetInit();
For(;;){
OSTimeDly(OS_TICKS_PER_SEC/50);
If(GetKey()!=KEY1) {
continue;
}
OSTaskCreate(Task2,(void *)0,&TaskStk[TASK_STK_SIZE-1],10);
While(GetKey()!=0) {
OSTimeDly(OS_TICKS_PER_SEC/50);
}
}
}
② Task2
void Task2(void *pdata){
pdata=pdata;
BeeMoo();
OSTimeDly(OS_TICKS_PER_SEC/8);
BeeMoo();
OSTimeDly(OS_TICKS_PER_SEC/4);
BeeMoo();
OSTimeDly(OS_TICKS_PER_SEC/8);
OSTaskDel(OS_PRIO_SELF);
}