stm32系统滴答定时器使用

发布者:紫菜包饭最新更新时间:2018-12-21 来源: eefocus关键字:stm32  系统滴答定时器 手机看文章 扫描二维码
随时随地手机看文章

1.systick介绍

     Systick就是一个定时器而已,只是它放在了NVIC中,主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断)。滴答中断?这里来简单地解释一下。操作系统进行运转的时候,也会有“心跳”。它会根据“心跳”的节拍来工作,把整个时间段分成很多小小的时间片,每个任务每次只能运行一个“时间片”的时间长度就得退出给别的任务运行,这样可以确保任何一个任务都不会霸占整个系统不放。或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。 只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息。

     知道systick在系统中的地位后,我们来了解systick的实现。这里只是举例说明systick的使用。它有四个寄存器,笔者把它列出来:

    SysTick->CTRL,        --控制和状态寄存器

    SysTick->LOAD,        --重装载寄存器

    SysTick->VAL,          --当前值寄存器

   SysTick->CALIB,        --校准值寄存器    

下图有他们的分别描述:     下图引用地址:http://blog.csdn.NET/marike1314/article/details/5673684

2.systick编程

    现在我们想通过Systick定时器做一个精确的延迟函数,比如让LED精确延迟1秒钟闪亮一次。

    思路:利用systick定时器为递减计数器,设定初值并使能它后,它会每个1系统时钟周期计数器减,计数到 0时,SysTick计数器自动重装初值并继续计数,同时触发中断。

那么每次计数器减到0,时间经过了:系统时钟周期 *计数器初值。我们使用72M作为系统时钟,那么每次计数器减1所用的时间是1/72M,计数器的初值如果是72000,那么每次计数器减到0,时间经过(1/72M)*72000= 0.001,即1ms。(简单理解:用72M的时钟频率,即1s计数72M=72000000次,那1ms计数72000次,所以计数值为72000) 

 

首先,我们需要有一个72M的systick系统时钟,那么,使用下面这个时钟OK就 !

    SystemInit();

    这个函数可以让主频运行到72M。可以把它作为systick的时钟源。

    接着开始配置systick,实际上配置systick的严格过程如下:

    1、调用SysTick_CounterCmd()       --失能SysTick计数器

    2、调用SysTick_ITConfig()          --失能SysTick中断

    3、调用SysTick_CLKSourceConfig()  --设置SysTick时钟源。

    4、调用SysTick_SetReload()         --设置SysTick重装载值。

    5、调用SysTick_ITConfig()          --使能SysTick中断

    6、调用SysTick_CounterCmd()       --开启SysTick计数器                                                      

    这里大家一定要注意,必须使得当前寄存器的值VAL等于0!

    SysTick->VAL  = (0x00);只有当VAL值为0时,计数器自动重载RELOAD。

接下来就可以直接调用Delay();函数进行延迟了。延迟函数的实现中,要注意的是,全局变量TimingDelay必须使用volatile,否则可能会被编译器优化。

下面我们来做一下程序分析:

(1)系统时钟进配置

首先我们对系统时钟进行了配置并且SetSysClock(void)函数使用72M作为系统时钟;

为了方面看清代码我选择截图:

(2)先来看看主函数

  1. int main(void)  

  2.   

  3. {            unsigned char i=0;  

  4.   

  5.         unsigned char a[] = "abncdee";  

  6.   

  7.           

  8.   

  9.         SystemInit1();//系统初始化  

  10.   

  11.    

  12.   

  13.        if (SysTick_Config(72000))  //1ms响应一次中断  

  14.   

  15.         {   

  16.   

  17.             /* Capture error */  

  18.   

  19.                  while (1);  

  20.   

  21.         }   

  22.   

  23.         /*解析:因为要求是每500ms往中位机发数据一件事,所以放在while语句中,  

  24.   

  25. *送据+延时可以完成相当于中断的效果;  

  26.   

  27.                *若是多任务中,其中一个任务需要中断,这把这个任务放在中断函数中调用;  

  28.   

  29.                */  

  30.   

  31.         while (1)  

  32.   

  33.         {  

  34.   

  35.              //测试代码:测试定时器功能,通过延时来测试  

  36.   

  37.    

  38.   

  39.              GPIO_SetBits(GPIOC, GPIO_Pin_6);      //V6  

  40.   

  41.              Delay(50);  

  42.   

  43.              GPIO_ResetBits(GPIOC, GPIO_Pin_6);         //V6  

  44.   

  45.              Delay(50);  

  46.   

  47.                         

  48.   

  49.             //功能1代码:每500ms发送数据  

  50.   

  51.                /*  

  52.   

  53.                       UART2_TX485_Puts("123450");  

  54.   

  55.                       Delay(500);  

  56.   

  57.            */  

  58.   

  59.             //功能2代码:上位发特定指令,中位机执行相应操作  

  60.   

  61.               //     RS485_Test();  

  62.   

  63.               }       

  64.   

  65. }  

int main(void)


{            unsigned char i=0;


        unsigned char a[] = "abncdee";


        


        SystemInit1();//系统初始化


 


       if (SysTick_Config(72000))  //1ms响应一次中断


        { 


            /* Capture error */


                 while (1);


        } 


        /*解析:因为要求是每500ms往中位机发数据一件事,所以放在while语句中,


*送据+延时可以完成相当于中断的效果;


               *若是多任务中,其中一个任务需要中断,这把这个任务放在中断函数中调用;


               */


        while (1)


        {


             //测试代码:测试定时器功能,通过延时来测试


 


             GPIO_SetBits(GPIOC, GPIO_Pin_6);      //V6


             Delay(50);


             GPIO_ResetBits(GPIOC, GPIO_Pin_6);         //V6


             Delay(50);


                      


            //功能1代码:每500ms发送数据


               /*


                      UART2_TX485_Puts("123450");


                      Delay(500);


           */


            //功能2代码:上位发特定指令,中位机执行相应操作


              //     RS485_Test();


              }     


}

(3)系统滴答定时器的配置--主角登场:

主函数中: SysTick_Config(72000) ;滴答定时器的参数是72000即计数72000

(因为我们使用72M的时钟频率,即1s计数72M=72000000次,那1ms计数72000次,所以计数值为72000) 

在文件Core_cm3.h中

SysTick_Config函数的具体实现如下:

static __INLINE uint32_t SysTick_Config(uint32_t ticks)  

  

{   

  

    if (ticks>SYSTICK_MAXCOUNT)    

  

     return (1);      /* Reload value impossible */  

  

    SysTick->LOAD = (ticks & SYSTICK_MAXCOUNT) - 1;//systick重装载值寄存器   /* set reload register */  

  

    NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Cortex-M0 System Interrupts */  

  

    SysTick->VAL = (0x00);  //systick当前值寄存器                                

  

   /* Load the SysTick Counter Value */  

   SysTick->CTRL = (1 << SYSTICK_CLKSOURCE) | (1<

  

}     

           

static __INLINE uint32_t SysTick_Config(uint32_t ticks)

 

 

    if (ticks>SYSTICK_MAXCOUNT)  

 

     return (1);      /* Reload value impossible */

 

    SysTick->LOAD = (ticks & SYSTICK_MAXCOUNT) - 1;//systick重装载值寄存器   /* set reload register */

 

    NVIC_SetPriority (SysTick_IRQn, (1<<__NVIC_PRIO_BITS) - 1); /* set Priority for Cortex-M0 System Interrupts */

 

    SysTick->VAL = (0x00);  //systick当前值寄存器                              

 

   /* Load the SysTick Counter Value */

   SysTick->CTRL = (1 << SYSTICK_CLKSOURCE) | (1<

}  

我们来看一下这句代码:SysTick->CTRL = (1 << SYSTICK_CLKSOURCE) | (1<

下面我们来看一下stm32f10x_it.h文件中:

找到滴答定时器中断函数:SysTickHandler()

void SysTickHandler(void)

{

    TimingDelay_Decrement();

}

从上文我们通过装载的计数值72000知道每1ms发生一次中断,在中断函数中调用一个函数TimingDelay_Decrement();-----即每1ms发生中断时就调用到此函数;

下面我们来看看TimingDelay_Decrement();在干些什么?

                                     

/*****************************************************************  

  

*函数名称:TimingDelay_Decrement  

  

*功能描述:中断里调用此函数,即没发生一次中断,此函数被调用,此函数里       

  

*          的变量TimingDelay 相当于减法计数器  

  

*   

  

*输入参数:无  

  

*返回值:无  

  

*其他说明:无  

  

*当前版本:v1.0  

  

*作    者: 梁尹宣  

  

*完成日期:2012年8月3日  

  

*修改日期      版本号      修改人      修改内容  

  

*-----------------------------------------------------------------  

  

*  

  

******************************************************************/  

  

     

  

void TimingDelay_Decrement(void)    

  

{    

  

    

  

  if (TimingDelay != 0x00)    

  

  {     

  

    TimingDelay--;    

  

  }  

  

}    

  

我们看了TimingDelay的定义,又看了还有哪些函数调用到这个变量,如下:  

  

/*****************************************************************  

  

*                                        全局变量  

  

******************************************************************/  

  

   

  

static __IO uint32_t TimingDelay=0;  

  

           

  

/*****************************************************************  

  

*函数名称:    Delay  

  

*功能描述:    利用系统时钟计数器递减达到延时功能  

  

*   

  

*输入参数:nTime :需要延的时毫秒数  

  

*返回值:无  

  

*其他说明:无  

  

*当前版本:v1.0  

  

*作    者: 梁尹宣  

  

*完成日期:2012年8月3日  

  

*修改日期      版本号      修改人      修改内容  

  

*-----------------------------------------------------------------  

  

*  

  

******************************************************************/  

  

   

  

void Delay(__IO uint32_t nTime)//delay被调用时,nTime=500  

  

{   

  

  TimingDelay = nTime;  

  

   

  

  while(TimingDelay != 0);  

  

}  

/*****************************************************************

 

*函数名称:TimingDelay_Decrement

 

*功能描述:中断里调用此函数,即没发生一次中断,此函数被调用,此函数里     

 

*          的变量TimingDelay 相当于减法计数器

 

 

*输入参数:无

 

*返回值:无

 

*其他说明:无

 

*当前版本:v1.0

 

*作    者: 梁尹宣

 

*完成日期:2012年8月3日

 

*修改日期      版本号      修改人      修改内容

 

*-----------------------------------------------------------------

 

*

 

******************************************************************/

 

   

 

void TimingDelay_Decrement(void)  

 

{  

 

  

 

  if (TimingDelay != 0x00)  

 

  {   

 

    TimingDelay--;  

 

  }

 

}  

 

我们看了TimingDelay的定义,又看了还有哪些函数调用到这个变量,如下:

 

/*****************************************************************

 

*                                        全局变量

 

******************************************************************/

 

 

 

static __IO uint32_t TimingDelay=0;

 

         

 

/*****************************************************************

 

*函数名称:    Delay

 

*功能描述:    利用系统时钟计数器递减达到延时功能

 

 

*输入参数:nTime :需要延的时毫秒数

 

*返回值:无

 

*其他说明:无

 

*当前版本:v1.0

 

*作    者: 梁尹宣

 

*完成日期:2012年8月3日

 

*修改日期      版本号      修改人      修改内容

 

*-----------------------------------------------------------------

 

*

 

******************************************************************/

 

 

 

void Delay(__IO uint32_t nTime)//delay被调用时,nTime=500

 

 

  TimingDelay = nTime;

 

 

 

  while(TimingDelay != 0);

 

}

通过上面几个函数我们知道了,在调用Delay(500)即nTime=500;在后在Delay()函数中TimingDelay =nTime;(即TimingDelay=500是它的初始值),再TimingDelay_Decrement(void)函数的作用就是把TimingDelay- -;每毫秒进行递减直到减到0为止;这样就起到一个延时的作用;

现在我们做出来的Delay(1),就是1毫秒延迟。Delay(1000)就是1秒。

  我们来画个图,方便这几个函数间关系的理解:

我们在返回到主函数main()中看这几条语句:红色标注de

while (1)  

  

        {  

  

             //测试代码:测试定时器功能,通过延时来测试  

  

             GPIO_SetBits(GPIOC, GPIO_Pin_6);      //V6   

  

             Delay(500);  

  

             GPIO_ResetBits(GPIOC, GPIO_Pin_6);         //V6   

  

             Delay(500);  

  

                        

  

            //功能1代码:每500ms发送数据  

  

               /*  

  

                      UART2_TX485_Puts("123450");  

  

                      Delay(500);  

  

           */  

  

            //功能2代码:上位发特定指令,中位机执行相应操作  

  

              //     RS485_Test();  

  

              }       

while (1)

 

        {

 

             //测试代码:测试定时器功能,通过延时来测试

 

             GPIO_SetBits(GPIOC, GPIO_Pin_6);      //V6 

 

             Delay(500);

 

             GPIO_ResetBits(GPIOC, GPIO_Pin_6);         //V6 

 

             Delay(500);

 

                      

 

            //功能1代码:每500ms发送数据

 

               /*

 

                      UART2_TX485_Puts("123450");

 

                      Delay(500);

 

           */

 

            //功能2代码:上位发特定指令,中位机执行相应操作

 

              //     RS485_Test();

 

              }     

经过上面系统定时器的分析我们知道Delay(500);是延时500ms ;那么LED就是每隔500ms闪烁一次;

上面有关系统滴答定时器的应用讲解基本完毕!

 有关SysTick编译后的源代码包,(其实客官细心的话一经发现上面代码含有485通讯代码,

只不过被暂时屏蔽掉了,下一节将讲到)我放在我的资源里:http://download.csdn.net/detail/yx_l128125/4511622

 

下面我们来看看一下参考资料的问题,一边对上面我写的博客有更深入的理解:

《Cortex-M3权威指南》

《Cortex-M3 Technical Reference Manual》

Q:什么是SYSTick定时器?

SysTick 是一个24位的倒计数定时器,当计到0时,将从RELOAD寄存器中自动重装载定时初值。只要不把它在SysTick控制及状态寄存器中的使能位清除,就永不停息。

Q:为什么要设置SysTick定时器?

(1)产生操作系统的时钟节拍

SysTick定时器被捆绑在NVIC中,用于产生SYSTICK异常(异常号:15)。在以前,大多操作系统需要一个硬件定时器来产生操作系统需要的滴答中断,作为整个系统的时基。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。

(2)便于不同处理器之间程序移植。

Cortex‐M3处理器内部包含了一个简单的定时器。因为所有的CM3芯片都带有这个定时器,软件在不同 CM3器件间的移植工作得以化简。该定时器的时钟源可以是内部时钟(FCLK,CM3上的自由运行时钟),或者是外部时钟( CM3处理器上的STCLK信号)。

不过,STCLK的具体来源则由芯片设计者决定,因此不同产品之间的时钟频率可能会大不相同,你需要检视芯片的器件手册来决定选择什么作为时钟源。SysTick定时器能产生中断,CM3为它专门开出一个异常类型,并且在向量表中有它的一席之地。它使操作系统和其它系统软件在CM3器件间的移植变得简单多了,因为在所有CM3产品间对其处理都是相同的。

(3)作为一个闹铃测量时间。

SysTick定时器除了能服务于操作系统之外,还能用于其它目的:如作为一个闹铃,用于测量时间等。要注意的是,当处理器在调试期间被喊停(halt)时,则SysTick定时器亦将暂停运作。

Q:Systick如何运行?

首先设置计数器时钟源,CTRL->CLKSOURCE(控制寄存器)。设置重载值(RELOAD寄存器),清空计数寄存器VAL(就是下图的CURRENT)。置CTRL->ENABLE位开始计时。

如果是中断则允许Systick中断,在中断例程中处理。如采用查询模式则不断读取控制寄存器的COUNTFLAG标志位,判断是否计时至零。或者采取下列一种方法

当SysTick定时器从1计到0时,它将把COUNTFLAG位置位;而下述方法可以清零之:

1. 读取SysTick控制及状态寄存器(STCSR)

2. 往SysTick当前值寄存器(STCVR)中写任何数据

只有当VAL值为0时,计数器自动重载RELOAD。

Q:如何使用SysTicks作为系统时钟?

SysTick 的最大使命,就是定期地产生异常请求,作为系统的时基。OS都需要这种“滴答”来推动任务和时间的管理。如欲使能SysTick异常,则把STCSR.TICKINT置位。另外,如果向量表被重定位到SRAM中,还需要为SysTick异常建立向量,提供其服务例程的入口地址。


关键字:stm32  系统滴答定时器 引用地址:stm32系统滴答定时器使用

上一篇:STM32初识——通用定时器配置
下一篇:STM32延时函数的三种方法——最好掌握第三种

推荐阅读最新更新时间:2024-03-16 16:21

半个小时搞定——stm32 之 DAC
DAC 可谓是 stm32 继按键最简单的一个 寄存器 配置吧,花了半个小时搞定! DAC 主要特征 ● 2 个 DAC 转换器:每个转换器对应 1 个输出通道 ● 8 位或者 12 位单调输出 ● 12 位模式下数据左对齐或者右对齐 ● 同步更新功能 ● 噪声波形生成 ● 三角波形生成 ● 双 DAC 通道同时或者分别转换 ● 每个通道都有 DMA 功能 ● 外部触发转换 看了这些东西,貌似很激动的样子,我们下面就开始配置 DAC 外设了 先直接看看寄存器: 位 12 DMAEN1:DAC 通道 1 DMA 使能(DAC channel1 DMA enable 该位由软件设置和清除。 0:关闭 DA
[单片机]
一文了解STM32启动过程
1 概述 说明 每一款芯片的启动文件都值得去研究,因为它可是你的程序跑的最初一段路,不可以不知道。通过了解启动文件,我们可以体会到处理器的架构、指令集、中断向量安排等内容,是非常值得玩味的。 STM32作为一款高端 Cortex-M3系列单片机,有必要了解它的启动文件。打好基础,为以后优化程序,写出高质量的代码最准备。 本文以一个实际测试代码--START_TEST为例进行阐述。 整体过程 STM32整个启动过程是指从上电开始,一直到运行到 main函数之间的这段过程,步骤为(以使用微库为例): ①上电后硬件设置SP、PC ②设置系统时钟 ③软件设置SP ④加载.data、.
[单片机]
一文了解<font color='red'>STM32</font>启动过程
STM32输入捕获实验示例详解
STM32输入捕获实验 寄存器部分讲解(以TIM5_CH1为例) TIMx_CCMR1.ICF 的作用 滤波器的作用就是“采集取样以便于确定准确的电平状态”。我们以ICIF = 0010为例: 实例应用:假设输入信号在最多5个内部时钟周期的时间内抖动,我们须配置滤波器的带宽长于5个时钟周期。因此我们可以(以fDTS频率)连续采样8次,以确认在TI1上一次真实的边沿变换,即在TIMx_CCMR1寄存器中写入IC1F=0011。 TIMx_CCER.CC1P的作用 这个寄存器很重要,它决定了“上升沿/下降沿触发输入捕获 “,而且最重要的是,它是用来配置极性的唯一寄存器,这说明输入极性与输出极性都要经过它进行配置,因此
[单片机]
<font color='red'>STM32</font>输入捕获实验示例详解
STM32+0.91寸oled滚动显示bme680测得的数据
#include bme680.h uint8_t bme680_data ={0}; uint8_t aqi_accuracy; int16_t temperature,altitude; uint16_t humidity,aqi; uint32_t pressure,gas; void Bme680_Config(void) { GPIO_InitTypeDef GPIO_InitStructure; USART_InitTypeDef USART_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB1Perip
[单片机]
演示STM32中PWM的配置与应用
打开CubeMX软件,新建工程。 输入芯片型号。 根据封装选择列表中的芯片,我的是LQFP144封装,双击此项。 在Project Manager选项卡中,配置工程名、编译工具,如下图所示。 在Pinout&Configuration选项卡中,配置System的Debug为Serial Wire,否则可能无法下载程序。 RCC选择高速外部时钟。 根据电路原理图,可知LED7对应PC6管脚。 本实验要让PC6管脚输出PWM波形,实现LED7呼吸灯效果。 找到PC6,选中TIM3_CH1。 找到TIM3,通道1配置PWM输出。 查找STM32参考手册时钟图,找到TIM3时钟的位置在APB1上。
[单片机]
演示<font color='red'>STM32</font>中PWM的配置与应用
STM32的ADC用法你都知道吗?
AD采样在电路中是一种比较常见的功能,可以用于电池电压检测、传感器值读取、信号采集等。STM32的ADC,由于引入了DMA,以及多种触发源,功能自然强大,用法也多种多样。这里简单说下单通道情况下,AD采样的几种用法。 1、AD单次转换+软件启动 最基本的用法,通过程序启动AD,AD采集一次,我们就去读一次。这种情况,建议开启AD转换完成中断,在中断中读出AD值并做处理。 这种方式的优点是配置简单,缺点么,太T么简单~ 初始化的时候,启动一次。然后在主循环里,每隔一秒启动一次。 在中断回调函数里,进行相关处理: 电脑输出如下: 2、连续转换+软件启动 在方法1的基础上做调整,从单次转换,变成连续转换。也就是说,只需要
[单片机]
<font color='red'>STM32</font>的ADC用法你都知道吗?
STM32 ESP8266和Java服务器透传模式下的双向通信
标注:注意大家一般的得到的STM32程序中的延迟函数delay_ms()中的入口参数值是有限制的,他最大值只能是1864,我之前不知道,程序中一直错误地使用它,所以导致延时不准确。 //延时nms //注意nms的范围 //SysTick- LOAD为24位寄存器,所以,最大延时为: //nms =0xffffff*8*1000/SYSCLK //SYSCLK单位为Hz,nms单位为ms //对72M条件下,nms =1864 void delay_ms(u16 nms) { u32 temp; SysTick- LOAD=(u32)nms*fac_ms; //时间加载(SysTick- LOAD为24bi
[单片机]
<font color='red'>STM32</font> ESP8266和Java服务器透传模式下的双向通信
使用VSCode搭建STM32开发环境
首先附上一张VS Code图一直都喜欢这种,黑色主题感觉高大上。 一、需要的软件和工具。 下载最新版VS Code: 安装好插件,具有良好的代码补全与调试功能。 “VS Code下载地址:https://code.visualstudio.com/” 下载 LLVM:用于代码补全,其实可以理解为 Clang。因为VS Code 中“C/C++”插件的自动补全功能不太好用。STM32中好多库函数都补全不出来。记得按照好之后,将路径添加到环境变量里。 “LLVM下载地址:http://releases.llvm.org/download.html” 下载安装 Git for Windows: 提供Git支持和MINGW64指令终端
[单片机]
使用VSCode搭建<font color='red'>STM32</font>开发环境
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved