STM32之串口原理

发布者:真诚相伴最新更新时间:2019-03-08 来源: eefocus关键字:STM32  串口原理 手机看文章 扫描二维码
随时随地手机看文章

串口通信定义

  串口是计算机上一种非常通用设备通信的协议。大多数计算机包含两个基于RS232的串口。串口同时也是仪器仪表设备通用的通信协议;很多GPIB兼容的设备也带有RS-232口。同时,串口通信协议也可以用于获取远程采集设备的数据。


串口通信原理


  串口通信的概念非常简单,串口按位(bit)发送和接收字节。尽管比按字节(byte)的并行通信慢,但是串口可以在使用一根线发送数据的同时用另一根线接收数据。它很简单并且能够实现远距离通信。比如IEEE488定义并行通行状态时,规定设备线总长不得超过20米,并且任意两个设备间的长度不得超过2米;而对于串口而言,长度可达1200米。典型地,串口用于ASCII码字符的传输。通信使用3根线完成:(1)地线,(2)发送,(3)接收。由于串口通信是异步的,端口能够在一根线上发送数据同时在另一根线上接收数据。其他线用于握手,但是不是必须的。串口通信最重要的参数是波特率、数据位、停止位和奇偶校验。对于两个进行通信的端口,这些参数必须匹配:   


  a,波特率:这是一个衡量通信速度的参数。它表示每秒钟传送的bit的个数。例如300波特表示每秒钟发送300个bit。当我们提到时钟周期时,我们就是指波特率例如如果协议需要4800波特率,那么时钟是4800Hz。这意味着串口通信在数据线上的采样率为4800Hz。通常电话线的波特率为14400,28800和36600。波特率可以远远大于这些值,但是波特率和距离成反比。高波特率常常用于放置的很近的仪器间的通信,典型的例子就是GPIB设备的通信。   


  b,数据位:这是衡量通信中实际数据位的参数。当计算机发送一个信息包,实际的数据不会是8位的,标准的值是5、7和8位。如何设置取决于你想传送的信息。比如,标准的ASCII码是0~127(7位)。扩展的ASCII码是0~255(8位)。如果数据使用简单的文本(标准 ASCII码),那么每个数据包使用7位数据。每个包是指一个字节,包括开始/停止位,数据位和奇偶校验位。由于实际数据位取决于通信协议的选取,术语“包”指任何通信的情况。   


  c,停止位:用于表示单个包的最后一位。典型的值为1,1.5和2位。由于数据是在传输线上定时的,并且每一个设备有其自己的时钟,很可能在通信中两台设备间出现了小小的不同步。因此停止位不仅仅是表示传输的结束,并且提供计算机校正时钟同步的机会。适用于停止位的位数越多,不同时钟同步的容忍程度越大,但是数据传输率同时也越慢。   


  d,奇偶校验位:在串口通信中一种简单的检错方式。有四种检错方式:偶、奇、高和低。当然没有校验位也是可以的。对于偶和奇校验的情况,串口会设置校验位(数据位后面的一位),用一个值确保传输的数据有偶个或者奇个逻辑高位。例如,如果数据是011,那么对于偶校验,校验位为0,保证逻辑高的位数是偶数个。如果是奇校验,校验位为1,这样就有3个逻辑高位。高位和低位不真正的检查数据,简单置位逻辑高或者逻辑低校验。这样使得接收设备能够知道一个位的状态,有机会判断是否有噪声干扰了通信或者是否传输和接收数据是否不同步。


基本接线方法


         目前较为常用的串口有9针串口(DB9)和25针串口(DB25),通信距离较近时(<12m),可以用电缆线直接连接标准RS232端口(RS422,RS485较远),若距离较远,需附加调制解调器(MODEM)。最为简单且常用的是三线制接法,即地、接收数据和发送数据三脚相连,本文只涉及到最为基本的接法,且直接用RS232相连。


  1.DB9和DB25的常用信号脚说明


  9针串口(DB9) 25针串口(DB25)

  针号 功能说明 缩写 针号 功能说明 缩写

  1 数据载波检测 DCD 8 数据载波检测 DCD

  2 接收数据 RXD 3 接收数据 RXD

  3 发送数据 TXD 2 发送数据 TXD

  4 数据终端准备 DTR 20 数据终端准备 DTR

  5 信号地 GND 7 信号地 GND

  6 数据设备准备好 DSR 6 数据准备好 DSR

  7 请求发送 RTS 4 请求发送 RTS

  8 清除发送 CTS 5 清除发送 CTS

  9 振铃指示 DELL 22 振铃指示 DELL


  2.RS232C串口通信接线方法(三线制)

  首先,串口传输数据只要有接收数据针脚和发送针脚就能实现:同一个串口的接收脚和发送脚直接用线相连,两个串口相连或一个串口和多个串口相连


  · 同一个串口的接收脚和发送脚直接用线相连 对9针串口和25针串口,均是2与3直接相连; 

  · 两个不同串口(不论是同一台计算机的两个串口或分别是不同计算机的串口) 


  上面表格是对微机标准串行口而言的,还有许多非标准设备,如接收GPS数据或电子罗盘数据,只要记住一个原则:接收数据针脚(或线)与发送数据针脚(或线)相连,彼此交叉,信号地对应相接,就能百战百胜。


  3.串口调试中要注意的几点:


  串口调试时,准备一个好用的调试工具,如串口调试助手、串口精灵等,有事半功倍之效果; 强烈建议不要带电插拨串口,插拨时至少有一端是断电的,否则串口易损坏。 


  单工、半双工和全双工的定义


  如果在通信过程的任意时刻,信息只能由一方A传到另一方B,则称为单工。

  如果在任意时刻,信息既可由A传到B,又能由B传A,但只能由一个方向上的传输存在,称为半双工传输。

  如果在任意时刻,线路上存在A到B和B到A的双向信号传输,则称为全双工。


  电话线就是二线全双工信道。 由于采用了回波抵消技术,双向的传输信号不致混淆不清。双工信道有时也将收、发信道分开,采用分离的线路或频带传输相反方向的信号,如回线传输。


  奇偶校验


  串行数据在传输过程中,由于干扰可能引起信息的出错,例如,传输字符‘E’,其各位为:

  0100,0101=45H

  D7 D0

  由于干扰,可能使位变为1,这种情况,我们称为出现了“误码”。我们把如何发现传输中的错误,叫“检错”。发现错误后,如何消除错误,叫“纠错”。

  最简单的检错方法是“奇偶校验”,即在传送字符的各位之外,再传送1位奇/偶校验位。可采用奇校验或偶校验。

  奇校验:所有传送的数位(含字符的各数位和校验位)中,“1”的个数为奇数,如:

  1 0110,0101

  0 0110,0001

  偶校验:所有传送的数位(含字符的各数位和校验位)中,“1”的个数为偶数,如:

  1 0100,0101

  0 0100,0001


  奇偶校验能够检测出信息传输过程中的部分误码(1位误码能检出,2位及2位以上误码不能检出),同时,它不能纠错。在发现错误后,只能要求重发。但由于其实现简单,仍得到了广泛使用。



  有些检错方法,具有自动纠错能力。如循环冗余码(CRC)检错等。


    


串口通讯流控制


  我们在串行通讯处理中,常常看到RTS/CTS和XON/XOFF这两个选项,这就是两个流控制的选项,目前流控制主要应用于调制解调器的数据通讯中,但对普通RS232编程,了解一点这方面的知识是有好处的。那么,流控制在串行通讯中有何作用,在编制串行通讯程序怎样应用呢?这里我们就来谈谈这个问题。 


  1.流控制在串行通讯中的作用


  这里讲到的“流”,当然指的是数据流。数据在两个串口之间传输时,常常会出现丢失数据的现象,或者两台计算机的处理速度不同,如台式机与单片机之间的通讯,接收端数据缓冲区已满,则此时继续发送来的数据就会丢失。现在我们在网络上通过MODEM进行数据传输,这个问题就尤为突出。流控制能解决这个问题,当接收端数据处理不过来时,就发出“不再接收”的信号,发送端就停止发送,直到收到“可以继续发送”的信号再发送数据。因此流控制可以控制数据传输的进程,防止数据的丢失。 PC机中常用的两种流控制是硬件流控制(包括RTS/CTS、DTR/CTS等)和软件流控制XON/XOFF(继续/停止),下面分别说明。 


  2.硬件流控制


  硬件流控制常用的有RTS/CTS流控制和DTR/DSR(数据终端就绪/数据设置就绪)流控制。


  硬件流控制必须将相应的电缆线连上,用RTS/CTS(请求发送/清除发送)流控制时,应将通讯两端的RTS、CTS线对应相连,数据终端设备(如计算机)使用RTS来起始调制解调器或其它数据通讯设备的数据流,而数据通讯设备(如调制解调器)则用CTS来起动和暂停来自计算机的数据流。这种硬件握手方式的过程为:我们在编程时根据接收端缓冲区大小设置一个高位标志(可为缓冲区大小的75%)和一个低位标志(可为缓冲区大小的25%),当缓冲区内数据量达到高位时,我们在接收端将CTS线置低电平(送逻辑0),当发送端的程序检测到CTS为低后,就停止发送数据,直到接收端缓冲区的数据量低于低位而将CTS置高电平。RTS则用来标明接收设备有没有准备好接收数据。


  常用的流控制还有还有DTR/DSR(数据终端就绪/数据设置就绪)。我们在此不再详述。由于流控制的多样性,我个人认为,当软件里用了流控制时,应做详细的说明,如何接线,如何应用。 


  3.软件流控制


  由于电缆线的限制,我们在普通的控制通讯中一般不用硬件流控制,而用软件流控制。一般通过XON/XOFF来实现软件流控制。常用方法是:当接收端的输入缓冲区内数据量超过设定的高位时,就向数据发送端发出XOFF字符(十进制的19或Control-S,设备编程说明书应该有详细阐述),发送端收到XOFF字符后就立即停止发送数据;当接收端的输入缓冲区内数据量低于设定的低位时,就向数据发送端发出XON字符(十进制的17或Control-Q),发送端收到XON字符后就立即开始发送数据。一般可以从设备配套源程序中找到发送的是什么字符。


  应该注意,若传输的是二进制数据,标志字符也有可能在数据流中出现而引起误操作,这是软件流控制的缺陷,而硬件流控制不会有这个问题。

关键字:STM32  串口原理 引用地址:STM32之串口原理

上一篇:STM32之串口例程
下一篇:STM32之外部中断例程

推荐阅读最新更新时间:2024-03-16 16:25

STM32学习总结——SMT32基本知识
1.STM32 简介 STM32系列基于专为要求高性能、低成本、低功耗的嵌入式应用专门设计的ARM Cortex-M3内核。按性能分成两个不同的系列:STM32F103“增强型”系列和STM32F101“基本型”系列。增强型系列时钟频率达到72MHz,是同类产品中性能最高的产品;基本型时钟频率为36MHz,以16位产品的价格得到比16位产品大幅提升的性能,是16位产品用户的最佳选择。两个系列都内置32K到128K的闪存,不同的是SRAM的最大容量和外设接口的组合。时钟频率72MHz时,从闪存执行代码,STM32功耗36mA,是32位市场上功耗最低的产品,相当于0.5mA/MHz。 2. STM32F103性能特点 1.内核:ARM
[单片机]
STM32之RCC配置
采用8MHz 外部HSE 时钟,程序的时钟设置参数流程如下: 1.将 RCC 寄存器重新设置为默认值:RCC_DeInit(); 2.打开外部高速时钟晶振 HSE :RCC_HSEConfig(RCC_HSE_ON); 3.等待外部高速时钟晶振工作: HSEStartUpStatus = RCC_WaitForHSEStartUp(); 4.设置 AHB 时钟 (HCLK) :RCC_HCLKConfig(RCC_SYSCLK_Div1); 5.设置APB 2时钟 (APB2) :RCC_PCLK2Config(RCC_HCLK_Div1);
[单片机]
JSP向Servlet传递数据以及与STM32、ESP8266通信过程
工作流程: login.jsp- ValidateTest.java- ControlTest.jsp和SocketTest.java- Control.java- 8266- STM32 以上文件中后缀名为.jsp的就是JSP文件,Control.java和ValidateTest.java就是所谓的Servlet文件,SocketTest.java就是普通的Java Class文件。即只要是和JSP文件有数据传递关系的都得创建Servlet文件,而不是创建Class文件,当然了,你创建Class文件也行,只不过里面还是都得有Servlet文件所必须的doPost之类的方法。 Servlet是用来和JSP进行通信的文件,
[单片机]
JSP向Servlet传递数据以及与<font color='red'>STM32</font>、ESP8266通信过程
STM32定时器有什么功能?STM32的用法详解
2.2 计数器模式 TI M2-TIM5可以由向上计数、向下计数、向上向下双向计数。向上计数模式中,计数器从0计数到自动加载值(TIMx_ARR计数器内容),然后重新从0开始计数并且产生一个计数器溢出事件。 在向下模式中,计数器从自动装入的值(TIMx_ARR)开始向下计数到0,然后从自动装入的值重新开始,并产生一个计数器向下溢出事件。而中央对齐模式(向上/向下计数)是计数器从0开始计数到自动装入的值-1,产生一个计数器溢出事件,然后向下计数到1并且产生一个计数器溢出事件;然后再从0开始重新计数。 2.3 编程 步骤 1. 配置系统 时钟 ; 2. 配置NVIC; 3. 配置GPIO; 4. 配置TIMER; 其中
[单片机]
<font color='red'>STM32</font>定时器有什么功能?<font color='red'>STM32</font>的用法详解
STM32定时器相关介绍(主要是有UEV更新事件介绍)
单片机的定时器的确很强大,参考说明书中就占了一百多页,占参考手册1/4 有多了。 STM32的定时器分了好几个类别,各个类别针对功能作用都不大相同。 分有: 一、高级定时器 二、通用定时器 三、基本定时器 四、看门狗定时器 五、SysTick定时器 其中看门狗定时器和SysTick定时器本篇笔记阐述,这里主要记下对平时使用定时器作用的计时计数器的一些自己的理解。 按照参考手册中的定义 高级定时器 通用定时器 基本定时器,这三个定时器成上下级的关系,即基本定时器有的功能通用定时器都有,而且还增加了向下、向上/向下计数器、PWM生成、输出比较、输入捕获等等功能;而高级定时器又包含了通用定时器的所有功能,另外还增加了死区
[单片机]
STM32学习记录15 ucosii消息队列
现在还不清楚消息邮箱和消息队列的区别,貌似消息队列是消息邮箱的集合?不太清楚。 环境:STM32F107VC 72M主频 1:主函数: int main(void) { BspInit();//初始化硬件并使能 SysTick 定时器 OSInit(); //必须调用,建立两个任务 空闲任务和统计任务 OSTaskCreate(TaskStart,(void *)0,&start_task_stk , START_TASK_PRIO); //建立任务 OSStart();//将控制权交给ucos,开始运行多任务 return 0; }: 2:先看一下初始化硬件和Systick函数 //初
[单片机]
FreeRTOS在STM32应用中的中断优先级设置问题
一、FreeRTOS中断设置介绍 FreeRTOSConfig.h中定义了两个宏,分别是: configKERNEL_INTERRUPT_PRIORITY configMAX_SYSCALL_INTERRUPT_PRIORITY configKERNEL_INTERRUPT_PRIORITY用来设置RTOS内核自己的中断优先级。因为RTOS内核中断不允许抢占用户使用的中断,因此这个宏一般定义为硬件最低优先级。configMAX_SYSCALL_INTERRUPT_PRIORITY用来设置可以在中断服务程序中安全调用FreeRTOS API函数的最高中断优先级。优先级小于等于这个宏所代表的优先级时,程序可以在中断服
[单片机]
FreeRTOS在<font color='red'>STM32</font>应用中的中断优先级设置问题
stm32的flash如何写数据和当做eerom使用
STM32 本身没有自带 EEPROM,但是 STM32 具有 IAP(在应用编程)功能,所以我们可以把它的 FLASH 当成 EEPROM 来使用,同时,开发者为了维护后期的版本升级,应该考虑到升级的可能和可行性,总不能让用户拿着仿真器在线升级或现场调试吧很尴尬的,其次建议串口升级是目前较为被大众接受的方式,stm32的串口升级时BOOT0在上啦的情况下升级只需要硬件设计时考虑到就ok。程序一般烧写在flash里边,地址0x8000000开始,升级的原理就是就是有一个写好的bootloader引导程序,它占用一定的空间比如0x800000-0x80002000这是这段代码的空间,那么用户程序就是实现功能的程序就要从0x800020
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved