下面先给个crc32的计算函数,这个函数计算的结果与STM32F 单片机上硬件单元的计算结果相同。
- uint32_t crc32(uint32_t *addr, int num, uint32_t crc)
- {
- int i;
- for (; num > 0; num--)
- {
- crc = crc ^ (*addr++);
- for (i = 0; i < 32; i++)
- {
- if (crc & 0x80000000)
- crc = (crc << 1) ^ POLY;
- else
- crc <<= 1;
- }
- crc &= 0xFFFFFFFF;
- }
- return(crc);
- }
在我写的文章《写给嵌入式程序员的循环冗余校验(CRC)算法入门引导》(http://blog.csdn.net/liyuanbhu/article/details/7882789) 中给了个利用查表法计算crc 的程序。那个程序稍微修改一点就能计算CRC32。下面给出改动后的程序。
- //crc32.h
- #ifndef CRC32_H_INCLUDED
- #define CRC32_H_INCLUDED
- #ifdef __cplusplus
- #if __cplusplus
- extern "C"{
- #endif
- #endif /* __cplusplus */
- #include
- /*
- * The CRC parameters. Currently configured for CRC32.
- * CRC32=X32+X26+X23+X22+X16+X12+X11+X10+X8+X7+X5+X4+X2+X1+X0
- */
- #define POLYNOMIAL 0x04C11DB7
- #define INITIAL_REMAINDER 0xFFFFFFFF
- #define FINAL_XOR_VALUE 0x00000000
- /*
- * The width of the CRC calculation and result.
- * Modify the typedef for an 8 or 32-bit CRC standard.
- */
- typedef uint32_t width_t;
- #define WIDTH (8 * sizeof(width_t))
- #define TOPBIT (1 << (WIDTH - 1))
- /**
- * Initialize the CRC lookup table.
- * This table is used by crcCompute() to make CRC computation faster.
- */
- void crcInit(void);
- /**
- * Compute the CRC checksum of a binary message block.
- * @para message, 用来计算的数据
- * @para nBytes, 数据的长度
- * @note This function expects that crcInit() has been called
- * first to initialize the CRC lookup table.
- */
- width_t crcCompute(unsigned char * message, unsigned int nBytes, width_t remainder);
- #ifdef __cplusplus
- #if __cplusplus
- }
- #endif
- #endif /* __cplusplus */
- #endif // CRC32_H_INCLUDED
对应的C程序如下:
- #include "crc32.h"
- /*
- * An array containing the pre-computed intermediate result for each
- * possible byte of input. This is used to speed up the computation.
- */
- static width_t crcTable[256];
- /**
- * Initialize the CRC lookup table.
- * This table is used by crcCompute() to make CRC computation faster.
- */
- void crcInit(void)
- {
- width_t remainder;
- width_t dividend;
- int bit;
- /* Perform binary long division, a bit at a time. */
- for(dividend = 0; dividend < 256; dividend++)
- {
- /* Initialize the remainder. */
- remainder = dividend << (WIDTH - 8);
- /* Shift and XOR with the polynomial. */
- for(bit = 0; bit < 8; bit++)
- {
- /* Try to divide the current data bit. */
- if(remainder & TOPBIT)
- {
- remainder = (remainder << 1) ^ POLYNOMIAL;
- }
- else
- {
- remainder = remainder << 1;
- }
- }
- /* Save the result in the table. */
- crcTable[dividend] = remainder;
- }
- } /* crcInit() */
- /**
- * Compute the CRC checksum of a binary message block.
- * @para message, 用来计算的数据
- * @para nBytes, 数据的长度
- * @note This function expects that crcInit() has been called
- * first to initialize the CRC lookup table.
- */
- width_t crcCompute(unsigned char * message, unsigned int nBytes, width_t remainder)
- {
- unsigned int offset;
- unsigned char byte;
- //width_t remainder = INITIAL_REMAINDER;
- /* Divide the message by the polynomial, a byte at a time. */
- for( offset = 0; offset < nBytes; offset++)
- {
- byte = (remainder >> (WIDTH - 8)) ^ message[offset];
- remainder = crcTable[byte] ^ (remainder << 8);
- }
- /* The final remainder is the CRC result. */
- return (remainder ^ FINAL_XOR_VALUE);
- } /* crcCompute() */
不过用这个程序直接计算得到的CRC 值与STM32 给出的并不相同。之所以会这样是因为字节序的原因。可以举个例子来说明这个问题。比如我们有一片内存区域要计算CRC值。这片内存区域的起始地址是 0x1000,共有8个字节。用 crcCompute() 函数计算时是按照地址顺序依次传入各个字节。也就是先计算0x1000 处的字节,再计算0x0001 处的字节,以此类推最后计算0x1007 地址处的字节。而 STM32 的硬件CRC单元是以32位的字为单位计算的。我们知道CRC 实际上是个多项式的除法运算,而除法运算是从高位算起的。也就是相当于它是按照 0x1003、0x1002、0x1001、0x1000 这个顺序计算第一个字,然后按照0x1007、0x1006、0x1005、x1004 的顺序计算第二个字。因此。我们要是预先将字节序调换一下得到结果就没有问题了。这就有了下面的改造。其中 remainder 传入 0xffffffff。因为STM32 中的CRC余数初始值为0xffffffff。
- uint32_t stm32crc32(uint32_t * message, unsigned int nWords, uint32_t remainder)
- {
- unsigned int offset;
- unsigned char byte;
- unsigned char *p = (unsigned char *)message;
- //width_t remainder = INITIAL_REMAINDER;
- /* Divide the message by the polynomial, a byte at a time. */
- for( offset = 0; offset < nWords; offset++)
- {
- byte = (remainder >> (WIDTH - 8)) ^ p[3];
- remainder = crcTable[byte] ^ (remainder << 8);
- byte = (remainder >> (WIDTH - 8)) ^ p[2];
- remainder = crcTable[byte] ^ (remainder << 8);
- byte = (remainder >> (WIDTH - 8)) ^ p[1];
- remainder = crcTable[byte] ^ (remainder << 8);
- byte = (remainder >> (WIDTH - 8)) ^ p[0];
- remainder = crcTable[byte] ^ (remainder << 8);
- p += 4;
- }
- /* The final remainder is the CRC result. */
- return (remainder);
- } /* crcCompute() */
大家可以验证这个函数的计算结果与STM32上的结果完全一样。
写到这里本该就结束了,不过我要多说一句,之所以要这么麻烦的调换字节序,都是小端(little endian)惹的祸。要是都采用大端格式就没这些麻烦的转换了。
上一篇:STM32F10x 学习笔记5(USART实现串口通讯 1)
下一篇:STM32F10x 学习笔记3(CRC计算单元)
推荐阅读最新更新时间:2024-03-16 14:52