先有必要了解stm32定时器的输入触发模块,如下图:
需要注意的是,一眼望去一个定时器似乎有8个通道,左边四个,右边四个,但其实左边和右边是共用相同的IO引脚,所以名称标注是一模一样。也就是说,每个通用定时器都只有四个独立通道,当某一通道作为了输入触发功能那就不能再作为输出匹配功能。这一点我们也可以从其他地方找到印证。比如TIM_ITConfig()函数中如下:
void TIM_ITConfig |
( |
TIM_TypeDef * |
TIMx, |
|
|
uint16_t |
TIM_IT, |
|
|
FunctionalState |
NewState |
|
) |
|
|
Enables or disables the specified TIM interrupts.
Parameters:
TIMx,: |
where x can be 1 to 17 to select the TIMx peripheral. |
TIM_IT,: |
specifies the TIM interrupts sources to be enabled or disabled. This parameter can be any combination of the following values: TIM_IT_Update: TIM update Interrupt source TIM_IT_CC1: TIM Capture Compare 1 Interrupt source TIM_IT_CC2: TIM Capture Compare 2 Interrupt source TIM_IT_CC3: TIM Capture Compare 3 Interrupt source TIM_IT_CC4: TIM Capture Compare 4 Interrupt source TIM_IT_COM: TIM Commutation Interrupt source TIM_IT_Trigger: TIM Trigger Interrupt source TIM_IT_Break: TIM Break Interrupt source |
我们可以看到此函数TIM_IT参数的取值范围如下:
TIM_IT_Update: TIM update Interrupt source
TIM_IT_CC1: TIM Capture Compare 1 Interrupt source
TIM_IT_CC2: TIM Capture Compare 2 Interrupt source
TIM_IT_CC3: TIM Capture Compare 3 Interrupt source
TIM_IT_CC4: TIM Capture Compare 4 Interrupt source
TIM_IT_COM: TIM Commutation Interrupt source
TIM_IT_Trigger: TIM Trigger Interrupt source
TIM_IT_Break: TIM Break Interrupt source
也就是说每个通道的捕获和比较功能是共用一个中断标志。
stm32定时器输入触发功能其实挺简单的,与AVR单片机几乎一样。就是单片机引脚上一旦出现一个有效边沿(可以配置为上升、下降或者上升下降均触发),那么定时器计数器CNT里面的值就会被相应的Capture/Compare X Register保存下来。这里X可以是1,2,3,4任何一个。并且中断标志位被置位。但是此时TIM的计数寄存器CNT却不管这一事件的发生,继续自己的计数。此功能可以用来测量外部信号的脉宽或者是周期。
对于定时器的时基单元TIM_TimeBaseStructure就不作说明了,在我前面的文章有专门介绍。下面就重点讲解输入触发单元TIM_ICInitStructure。
首先看次结构体原型的定义如下:
typedef struct
{
uint16_t TIM_Channel; /*!< Specifies the TIM channel.
This parameter can be a value of @ref TIM_Channel */
uint16_t TIM_ICPolarity; /*!< Specifies the active edge of the input signal.
This parameter can be a value of @ref TIM_Input_Capture_Polarity */
uint16_t TIM_ICSelection; /*!< Specifies the input.
This parameter can be a value of @ref TIM_Input_Capture_Selection */
uint16_t TIM_ICPrescaler; /*!< Specifies the Input Capture Prescaler.
This parameter can be a value of @ref TIM_Input_Capture_Prescaler */
uint16_t TIM_ICFilter; /*!< Specifies the input capture filter.
This parameter can be a number between 0x0 and 0xF */
} TIM_ICInitTypeDef;
它一共有5个成员,5个成员具体作用,我们只要看看3.5版本固件库的说明就清楚了。
uint16_t TIM_ICInitTypeDef::TIM_Channel |
Specifies the TIM channel. This parameter can be a value of TIM_Channel
其中TIM_Channel的取值范围如下:
TIM_Channel_1.
TIM_Channel_2
TIM_Channel_3
TIM_Channel_4
uint16_t TIM_ICInitTypeDef::TIM_ICFilter |
Specifies the input capture filter. This parameter can be a number between 0x0 and 0xF
说实话这个成员具体作用我没有深入了解,仅仅知道是作为对输入信号的滤波作用,估计是让用户设定用多少个采样时钟来确定最终输入信号,起到滤波作用,避免高频信号干扰,反正不管它了。
uint16_t TIM_ICInitTypeDef::TIM_ICPolarity |
Specifies the active edge of the input signal. This parameter can be a value of TIM_Input_Capture_Polarity
这个就是触发边沿的极性选择了,取值范围如下:
TIM_ICPolarity_BothEdge
TIM_ICPolarity_Rising
TIM_ICPolarity_Falling
uint16_t TIM_ICInitTypeDef::TIM_ICPrescaler |
Specifies the Input Capture Prescaler. This parameter can be a value of TIM_Input_Capture_Prescaler
这个成员是对外部信号进行分频,也即是设置上图中的Prescaler,可以设置为1/2/4/8分频。
uint16_t TIM_ICInitTypeDef::TIM_ICSelection |
Specifies the input. This parameter can be a value of TIM_Input_Capture_Selection
这个成员的作用就必须要对照上面的示意图才能明白。仔细看上面的图,可以发现定时器的4个通道并不是完全独立的,而是1、2一组,3、4一组,同组之间的通道是有联系的。也就是可以出现交叉触发。而TIM_ICSelection就是选择要不要使用交叉来触发,如果不明白可以看固件库的说明文档,如下是此结构体成员的取值范围:
#define TIM_ICSelection_DirectTI ((uint16_t)0x0001) |
TIM Input 1, 2, 3 or 4 is selected to be connected to IC1, IC2, IC3 or IC4, respectively
#define TIM_ICSelection_IndirectTI ((uint16_t)0x0002) |
TIM Input 1, 2, 3 or 4 is selected to be connected to IC2, IC1, IC4 or IC3, respectively.
#define TIM_ICSelection_TRC ((uint16_t)0x0003) |
TIM Input 1, 2, 3 or 4 is selected to be connected to TRC.
也就是说,根据不同的取值,可以讲外部引脚的触发信号连到内部不同的单元,这样就使得单片机更加灵活了。
下面是main.c文件
#include "stm32f10x.h"
GPIO_InitTypeDef GPIO_InitStructure;
TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;
TIM_ICInitTypeDef TIM_ICInitStructure;
NVIC_InitTypeDef NVIC_InitStructure;
void delay()
{
u32 i,j;
for(i=0;i<1000;i++)
for(j=0;j<5000;j++)
;
}
void rcc_cfg()
{
;
}
void gpio_cfg()
{
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD|RCC_APB2Periph_GPIOA, ENABLE);
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //随意延时led取反,且将PA8作为触发定时器电平
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_2; //触发中断时,取反PD2
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOD, &GPIO_InitStructure);
/* TIM3 channel 2 pin (PA.07) configuration */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
void nvic_cfg()
{
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_2);
/* Enable the TIM3 global Interrupt */
NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn; //TIM3中断
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0; //先占优先级0级
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 3; //从优先级3级
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //IRQ通道被使能
NVIC_Init(&NVIC_InitStructure); //根据NVIC_InitStruct中指定的参数初始化外设NVIC寄存器
}
void tim3_cfg()
{
RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3,ENABLE);
TIM_DeInit(TIM3);
TIM_InternalClockConfig(TIM3);
//预分频系数为36000-1,这样计数器时钟为72MHz/36000 = 2kHz
TIM_TimeBaseStructure.TIM_Prescaler = 36000 - 1;
//设置时钟分割
TIM_TimeBaseStructure.TIM_ClockDivision = TIM_CKD_DIV1;
//设置计数器模式为向上计数模式
TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up;
//设置计数溢出大小,每计2000个数就产生一个更新事件
TIM_TimeBaseStructure.TIM_Period = 2000 - 1;
//将配置应用到TIM2中
TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);
//禁止ARR预装载缓冲器
TIM_ARRPreloadConfig(TIM3, DISABLE);
//下面是对 TIM_ICInitStructure的配置
TIM_ICInitStructure.TIM_Channel = TIM_Channel_2;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInitStructure.TIM_ICSelection = TIM_ICSelection_DirectTI;
TIM_ICInitStructure.TIM_ICPrescaler = TIM_ICPSC_DIV1;
TIM_ICInitStructure.TIM_ICFilter = 0x0; /*选择输入比较滤波器,滤波设置,经历几个周期跳变认定波形稳定0x0~0xF*/
TIM_ICInit(TIM3, &TIM_ICInitStructure);
//开启TIM2的中断
TIM_ClearFlag(TIM3, TIM_IT_CC2);
TIM_ITConfig(TIM3,TIM_IT_CC2,ENABLE);
TIM_Cmd(TIM3, ENABLE); //使能TIMx外设
}
/
* @brief Main program.
* @param None
* @retval None
*/
int main(void)
{
rcc_cfg();
gpio_cfg();
nvic_cfg();
tim3_cfg();
while (1)
{
/* Set PA8 */
GPIO_WriteBit(GPIOA, GPIO_Pin_8, Bit_SET);
delay();
/* Reset PA8 */
GPIO_WriteBit(GPIOA, GPIO_Pin_8, Bit_RESET);
delay();
}
}
注意定时器3通道2引脚设置为浮空输入。
下面是stm32f10x_it.c文件
#include "stm32f10x_it.h"
u8 flag=0;
extern TIM_ICInitTypeDef TIM_ICInitStructure;
void TIM3_IRQHandler(void)
{
if(TIM_GetITStatus(TIM3, TIM_IT_CC2) == SET)
{
/* Clear TIM3 Capture compare interrupt pending bit */
TIM_ClearITPendingBit(TIM3, TIM_IT_CC2);
//每次进入中断就改变捕获触发方式,且翻转PD2的电平
if(flag==0)
{
flag=1;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Falling;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
GPIO_WriteBit(GPIOD, GPIO_Pin_2, Bit_RESET);
}
else
{
flag=0;
TIM_ICInitStructure.TIM_ICPolarity = TIM_ICPolarity_Rising;
TIM_ICInit(TIM3, &TIM_ICInitStructure);
GPIO_WriteBit(GPIOD, GPIO_Pin_2, Bit_SET);
}
}
}
程序运行后,可以看到板子上两个led灯交替闪烁。
我并没有对捕获值作任何处理,因为我只是测试程序是否能顺利进入捕获中断。
上一篇:STM32F4——定时器原理及应用中断、输入捕获、PWM输出
下一篇:STM32高级定时器、通用定时器TIMx、基本定时器TIM6和TIM7的区别
推荐阅读最新更新时间:2024-03-16 14:54
设计资源 培训 开发板 精华推荐
- PC产业驶入创新超车道,英特尔蓉城撬动AI新引擎
- 与产业聚力共赢,英特尔举行新质生产力技术生态大会
- “新”享5G-A万兆网络前沿体验 高通携手产业伙伴亮相第二届链博会
- 英飞凌推出符合ASIL-D标准的新型汽车制动系统和电动助力转向系统三相栅极驱动器 IC
- 南芯科技推出80V升降压转换器,持续深耕工业储能市场
- 法雷奥与罗姆联合开发新一代功率电子领域
- 贸泽电子开售能为电动汽车牵引逆变器提供可扩展性能的 英飞凌HybridPACK Drive G2模块
- 德州仪器新型 MCU 可实现边缘 AI 和先进的实时控制, 提高系统效率、安全性和可持续性
- 瑞萨推出高性能四核应用处理器, 增强工业以太网与多轴电机控制解决方案阵容
- 研华全新模块化电脑SOM-6833助力5G路测设备升级