主机:WINXP
开发环境:MDK4.23
MCU:STM32F103CBT6
说明:
串口可以配置成用DMA的方式接收数据,不过DMA需要定长才能产生接收中断,如何接收可变长度的数据呢?
方法有以下3种:
1.将RX脚与一路时钟外部引脚相连,当串口一帧发完,即可利用此定时器产生超时中断.这个实时性较高,可以做到1个字节实时监测.
2.不改变硬件,开启一个定时器监控DMA接收,如果超时则产生中断.这个实时性不高,因为超时时间必须要大于需要接收帧的时间,精度不好控制.
3.STM32单片机有的串口可以监测总线是否处于空闲,如果空闲则产生中断.可以用它来监测DMA接收是否完毕.这种方式实时性很高.
本文采用第3种方式.在波特率576000下大数据包冲击证明可行.
源代码:
//串口接收DMA缓存 #define UART_RX_LEN 128 extern uint8_t Uart_Rx[UART_RX_LEN];
//串口接收DMA缓存 uint8_t Uart_Rx[UART_RX_LEN] = {0};
//---------------------串口功能配置--------------------- //打开串口对应的外设时钟 RCC_APB2PeriphClockCmd(RCC_APB2Periph_USART1 , ENABLE); //串口发DMA配置 //启动DMA时钟 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //DMA发送中断设置 NVIC_InitStructure.NVIC_IRQChannel = DMA1_Channel4_IRQn; NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 3; NVIC_InitStructure.NVIC_IRQChannelSubPriority = 2; NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; NVIC_Init(&NVIC_InitStructure); //DMA1通道4配置 DMA_DeInit(DMA1_Channel4); //外设地址 DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&USART1->DR); //内存地址 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)Uart_Send_Buffer; //dma传输方向单向 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST; //设置DMA在传输时缓冲区的长度 DMA_InitStructure.DMA_BufferSize = 100; //设置DMA的外设递增模式,一个外设 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //设置DMA的内存递增模式 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //外设数据字长 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //内存数据字长 DMA_InitStructure.DMA_MemoryDataSize = DMA_PeripheralDataSize_Byte; //设置DMA的传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //设置DMA的优先级别 DMA_InitStructure.DMA_Priority = DMA_Priority_High; //设置DMA的2个memory中的变量互相访问 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel4,&DMA_InitStructure); DMA_ITConfig(DMA1_Channel4,DMA_IT_TC,ENABLE); //使能通道4 //DMA_Cmd(DMA1_Channel4, ENABLE); //串口收DMA配置 //启动DMA时钟 RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //DMA1通道5配置 DMA_DeInit(DMA1_Channel5); //外设地址 DMA_InitStructure.DMA_PeripheralBaseAddr = (u32)(&USART1->DR); //内存地址 DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)Uart_Rx; //dma传输方向单向 DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC; //设置DMA在传输时缓冲区的长度 DMA_InitStructure.DMA_BufferSize = UART_RX_LEN; //设置DMA的外设递增模式,一个外设 DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable; //设置DMA的内存递增模式 DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable; //外设数据字长 DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte; //内存数据字长 DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte; //设置DMA的传输模式 DMA_InitStructure.DMA_Mode = DMA_Mode_Normal; //设置DMA的优先级别 DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh; //设置DMA的2个memory中的变量互相访问 DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; DMA_Init(DMA1_Channel5,&DMA_InitStructure); //使能通道5 DMA_Cmd(DMA1_Channel5,ENABLE); //初始化参数 //USART_InitStructure.USART_BaudRate = DEFAULT_BAUD; USART_InitStructure.USART_WordLength = USART_WordLength_8b; USART_InitStructure.USART_StopBits = USART_StopBits_1; USART_InitStructure.USART_Parity = USART_Parity_No; USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None; USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx; USART_InitStructure.USART_BaudRate = DEFAULT_BAUD; //初始化串口 USART_Init(USART1,&USART_InitStructure); //TXE发送中断,TC传输完成中断,RXNE接收中断,PE奇偶错误中断,可以是多个 //USART_ITConfig(USART1,USART_IT_RXNE,ENABLE); //中断配置 USART_ITConfig(USART1,USART_IT_TC,DISABLE); USART_ITConfig(USART1,USART_IT_RXNE,DISABLE); USART_ITConfig(USART1,USART_IT_IDLE,ENABLE); //配置UART1中断 NVIC_PriorityGroupConfig(NVIC_PriorityGroup_3); NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn; //通道设置为串口1中断 NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 2; //中断占先等级0 NVIC_InitStructure.NVIC_IRQChannelSubPriority = 1; //中断响应优先级0 NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE; //打开中断 NVIC_Init(&NVIC_InitStructure); //采用DMA方式发送 USART_DMACmd(USART1,USART_DMAReq_Tx,ENABLE); //采用DMA方式接收 USART_DMACmd(USART1,USART_DMAReq_Rx,ENABLE); //启动串口 USART_Cmd(USART1, ENABLE);
//串口1接收中断 void USART1_IRQHandler(void) { uint32_t temp = 0; uint16_t i = 0; if(USART_GetITStatus(USART1, USART_IT_IDLE) != RESET) { //USART_ClearFlag(USART1,USART_IT_IDLE); temp = USART1->SR; temp = USART1->DR; //清USART_IT_IDLE标志 DMA_Cmd(DMA1_Channel5,DISABLE); temp = UART_RX_LEN - DMA_GetCurrDataCounter(DMA1_Channel5); for (i = 0;i < temp;i++) { Data_Receive_Usart = Uart_Rx[i]; //启动串口状态机 usart_state_run(); } //设置传输数据长度 DMA_SetCurrDataCounter(DMA1_Channel5,UART_RX_LEN); //打开DMA DMA_Cmd(DMA1_Channel5,ENABLE); } __nop(); }
测试结果:
条件:单片机运行于72M,与PC通信速率为460800.PC每隔100ms发送一个9个字节的包:c5 5c 6 0 6F 10 5 4e f7.
测试:单片机每次收到此包,一个IO作电平跳转,然后处理返回一包.
示波器显示:
放大显示:
上一篇:STM32 RCC基本原理和配置流程
下一篇:STM32的SPI采用DMA方式传输测试
推荐阅读最新更新时间:2024-03-16 14:55