以下我我修改的用户空间的驱动:
/* * spidev.c -- simple synchronous userspace interface to SPI devices * * Copyright (C) 2006 SWAPP * Andrea Paterniani文件名:spidev_gzsd.c* Copyright (C) 2007 David Brownell (simplification, cleanup) * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define SPI_IRQ IRQ_EINT(2) #define IRQSTATE S5PV210_GPH0(2) #define BUF_SIZE 38 u8 gzsd_buffer[BUF_SIZE]; struct spi_transfer *gk_xfers; struct spi_ioc_transfer *g_uxfers; /* * This supports acccess to SPI devices using normal userspace I/O calls. * Note that while traditional UNIX/POSIX I/O semantics are half duplex, * and often mask message boundaries, full SPI support requires full duplex * transfers. There are several kinds of internal message boundaries to * handle chipselect management and other protocol options. * * SPI has a character major number assigned. We allocate minor numbers * dynamically using a bitmask. You must use hotplug tools, such as udev * (or mdev with busybox) to create and destroy the /dev/spidevB.C device * nodes, since there is no fixed association of minor numbers with any * particular SPI bus or device. */ #define SPIDEV_MAJOR 153 /* assigned */ #define N_SPI_MINORS 32 /* ... up to 256 */ static DECLARE_BITMAP(minors, N_SPI_MINORS); /* Bit masks for spi_device.mode management. Note that incorrect * settings for some settings can cause *lots* of trouble for other * devices on a shared bus: * * - CS_HIGH ... this device will be active when it shouldn't be * - 3WIRE ... when active, it won't behave as it should * - NO_CS ... there will be no explicit message boundaries; this * is completely incompatible with the shared bus model * - READY ... transfers may proceed when they shouldn't. * * REVISIT should changing those flags be privileged? */ #define SPI_MODE_MASK (SPI_CPHA | SPI_CPOL | SPI_CS_HIGH \ | SPI_LSB_FIRST | SPI_3WIRE | SPI_LOOP \ | SPI_NO_CS | SPI_READY) struct spidev_data { dev_t devt; spinlock_t spi_lock; struct spi_device *spi; struct list_head device_entry; /* buffer is NULL unless this device is open (users > 0) */ struct mutex buf_lock; unsigned users; u8 *buffer; int irq; //add by dao wait_queue_head_t rqueue; }; static flag_poll = 0; static LIST_HEAD(device_list); static DEFINE_MUTEX(device_list_lock); static unsigned bufsiz = 4096; module_param(bufsiz, uint, S_IRUGO); MODULE_PARM_DESC(bufsiz, "data bytes in biggest supported SPI message"); /*-------------------------------------------------------------------------*/ /* * We can't use the standard synchronous wrappers for file I/O; we * need to protect against async removal of the underlying spi_device. */ static void spidev_complete(void *arg) { complete(arg); } static ssize_t spidev_sync(struct spidev_data *spidev, struct spi_message *message) { DECLARE_COMPLETION_ONSTACK(done); int status; message->complete = spidev_complete; message->context = &done; spin_lock_irq(&spidev->spi_lock); if (spidev->spi == NULL) status = -ESHUTDOWN; else status = spi_async(spidev->spi, message); spin_unlock_irq(&spidev->spi_lock); if (status == 0) { wait_for_completion(&done); status = message->status; if (status == 0) status = message->actual_length; } return status; } static inline ssize_t spidev_sync_write(struct spidev_data *spidev, size_t len) { struct spi_transfer t = { .tx_buf = spidev->buffer, .len = len, }; struct spi_message m; spi_message_init(&m); spi_message_add_tail(&t, &m); return spidev_sync(spidev, &m); } static inline ssize_t spidev_sync_read(struct spidev_data *spidev, size_t len) { struct spi_transfer t = { .rx_buf = spidev->buffer, .len = len, }; struct spi_message m; spi_message_init(&m); spi_message_add_tail(&t, &m); return spidev_sync(spidev, &m); } /*-------------------------------------------------------------------------*/ /* Read-only message with current device setup */ static ssize_t spidev_read(struct file *filp, char __user *buf, size_t count, loff_t *f_pos) { struct spidev_data *spidev; ssize_t status = 0; /* chipselect only toggles at start or end of operation */ if (count > bufsiz) return -EMSGSIZE; spidev = filp->private_data; mutex_lock(&spidev->buf_lock); status = spidev_sync_read(spidev, count); if (status > 0) { unsigned long missing; missing = copy_to_user(buf, spidev->buffer, status); if (missing == status) status = -EFAULT; else status = status - missing; } mutex_unlock(&spidev->buf_lock); return status; } /* Write-only message with current device setup */ static ssize_t spidev_write(struct file *filp, const char __user *buf, size_t count, loff_t *f_pos) { struct spidev_data *spidev; ssize_t status = 0; unsigned long missing; /* chipselect only toggles at start or end of operation */ if (count > bufsiz) return -EMSGSIZE; spidev = filp->private_data; mutex_lock(&spidev->buf_lock); missing = copy_from_user(spidev->buffer, buf, count); if (missing == 0) { status = spidev_sync_write(spidev, count); } else status = -EFAULT; mutex_unlock(&spidev->buf_lock); return status; } static int spidev_message(struct spidev_data *spidev, struct spi_ioc_transfer *u_xfers, unsigned n_xfers) { struct spi_message msg; struct spi_transfer *k_xfers; struct spi_transfer *k_tmp; struct spi_ioc_transfer *u_tmp; unsigned n, total; u8 *buf; int status = -EFAULT; spi_message_init(&msg); k_xfers = kcalloc(n_xfers, sizeof(*k_tmp), GFP_KERNEL); if (k_xfers == NULL) return -ENOMEM; /* Construct spi_message, copying any tx data to bounce buffer. * We walk the array of user-provided transfers, using each one * to initialize a kernel version of the same transfer. */ buf = spidev->buffer; total = 0; for (n = n_xfers, k_tmp = k_xfers, u_tmp = u_xfers; n; n--, k_tmp++, u_tmp++) { k_tmp->len = u_tmp->len; total += k_tmp->len; if (total > bufsiz) { status = -EMSGSIZE; goto done; } if (u_tmp->rx_buf) { k_tmp->rx_buf = buf; if (!access_ok(VERIFY_WRITE, (u8 __user *) (uintptr_t) u_tmp->rx_buf, u_tmp->len)) goto done; } if (u_tmp->tx_buf) { k_tmp->tx_buf = buf; if (copy_from_user(buf, (const u8 __user *) (uintptr_t) u_tmp->tx_buf, u_tmp->len)) goto done; } buf += k_tmp->len; k_tmp->cs_change = !!u_tmp->cs_change; k_tmp->bits_per_word = u_tmp->bits_per_word; k_tmp->delay_usecs = u_tmp->delay_usecs; k_tmp->speed_hz = u_tmp->speed_hz; #ifdef VERBOSE dev_dbg(&spidev->spi->dev, " xfer len %zd %s%s%s%dbits %u usec %uHz\n", u_tmp->len, u_tmp->rx_buf ? "rx " : "", u_tmp->tx_buf ? "tx " : "", u_tmp->cs_change ? "cs " : "", u_tmp->bits_per_word ? : spidev->spi->bits_per_word, u_tmp->delay_usecs, u_tmp->speed_hz ? : spidev->spi->max_speed_hz); #endif spi_message_add_tail(k_tmp, &msg); } printk("%s :----line is %d\n",__func__,__LINE__); status = spidev_sync(spidev, &msg); printk("%s :----line is %d\n",__func__,__LINE__); if (status < 0) goto done; /* copy any rx data out of bounce buffer */ buf = spidev->buffer; for (n = n_xfers, u_tmp = u_xfers; n; n--, u_tmp++) { if (u_tmp->rx_buf) { if (__copy_to_user((u8 __user *) (uintptr_t) u_tmp->rx_buf, buf, u_tmp->len)) { status = -EFAULT; goto done; } } buf += u_tmp->len; } status = total; done: kfree(k_xfers); return status; } static DECLARE_WAIT_QUEUE_HEAD(gzsd_spi_wait); static irqreturn_t gzsd_spiread(int irq, void *dev_id) { struct spidev_data *spidev = (struct spidev_data *)dev_id; //dev_err(&spidev->spi->dev, "is spi dev now.\n"); disable_irq_nosync(irq); flag_poll = 1; //printk("%s:------------line is %d\n",__func__,__LINE__); #if 1 wake_up_interruptible(&spidev->rqueue); #else wake_up(&gzsd_spi_wait); #endif //wake_up_interruptible_sync(&spidev->rqueue); //wake_up(&spidev->rqueue); enable_irq(irq); return IRQ_HANDLED; } unsigned int gzsd_poll(struct file *filp, poll_table *wait) { struct spidev_data *spidev; spidev = filp->private_data; unsigned int mask = 0; //printk("%s:------------line is %d\n",__func__,__LINE__); #if 1 poll_wait(filp, &spidev->rqueue, wait); #else poll_wait(filp, &gzsd_spi_wait, wait); #endif if(flag_poll) { mask = POLLIN | POLLRDNORM; //can be read flag_poll = 0; } return mask; } static long spidev_ioctl(struct file *filp, unsigned int cmd, unsigned long arg) { int err = 0; int retval = 0; struct spidev_data *spidev; struct spi_device *spi; u32 tmp; unsigned n_ioc; struct spi_ioc_transfer *ioc; /* Check type and command number */ if (_IOC_TYPE(cmd) != SPI_IOC_MAGIC) return -ENOTTY; /* Check access direction once here; don't repeat below. * IOC_DIR is from the user perspective, while access_ok is * from the kernel perspective; so they look reversed. */ if (_IOC_DIR(cmd) & _IOC_READ) err = !access_ok(VERIFY_WRITE, (void __user *)arg, _IOC_SIZE(cmd)); if (err == 0 && _IOC_DIR(cmd) & _IOC_WRITE) err = !access_ok(VERIFY_READ, (void __user *)arg, _IOC_SIZE(cmd)); if (err) return -EFAULT; /* guard against device removal before, or while, * we issue this ioctl. */ spidev = filp->private_data; spin_lock_irq(&spidev->spi_lock); spi = spi_dev_get(spidev->spi); spin_unlock_irq(&spidev->spi_lock); if (spi == NULL) return -ESHUTDOWN; /* use the buffer lock here for triple duty: * - prevent I/O (from us) so calling spi_setup() is safe; * - prevent concurrent SPI_IOC_WR_* from morphing * data fields while SPI_IOC_RD_* reads them; * - SPI_IOC_MESSAGE needs the buffer locked "normally". */ mutex_lock(&spidev->buf_lock); switch (cmd) { /* read requests */ case SPI_IOC_RD_MODE: retval = __put_user(spi->mode & SPI_MODE_MASK, (__u8 __user *)arg); break; case SPI_IOC_RD_LSB_FIRST: retval = __put_user((spi->mode & SPI_LSB_FIRST) ? 1 : 0, (__u8 __user *)arg); break; case SPI_IOC_RD_BITS_PER_WORD: retval = __put_user(spi->bits_per_word, (__u8 __user *)arg); break; case SPI_IOC_RD_MAX_SPEED_HZ: retval = __put_user(spi->max_speed_hz, (__u32 __user *)arg); break; /* write requests */ case SPI_IOC_WR_MODE: retval = __get_user(tmp, (u8 __user *)arg); if (retval == 0) { u8 save = spi->mode; if (tmp & ~SPI_MODE_MASK) { retval = -EINVAL; break; } tmp |= spi->mode & ~SPI_MODE_MASK; spi->mode = (u8)tmp; retval = spi_setup(spi); if (retval < 0) spi->mode = save; else dev_dbg(&spi->dev, "spi mode %02x\n", tmp); } break; case SPI_IOC_WR_LSB_FIRST: retval = __get_user(tmp, (__u8 __user *)arg); if (retval == 0) { u8 save = spi->mode; if (tmp) spi->mode |= SPI_LSB_FIRST; else spi->mode &= ~SPI_LSB_FIRST; retval = spi_setup(spi); if (retval < 0) spi->mode = save; else dev_dbg(&spi->dev, "%csb first\n", tmp ? 'l' : 'm'); } break; case SPI_IOC_WR_BITS_PER_WORD: retval = __get_user(tmp, (__u8 __user *)arg); if (retval == 0) { u8 save = spi->bits_per_word; spi->bits_per_word = tmp; retval = spi_setup(spi); if (retval < 0) spi->bits_per_word = save; else dev_dbg(&spi->dev, "%d bits per word\n", tmp); } break; case SPI_IOC_WR_MAX_SPEED_HZ: retval = __get_user(tmp, (__u32 __user *)arg); if (retval == 0) { u32 save = spi->max_speed_hz; spi->max_speed_hz = tmp; retval = spi_setup(spi); if (retval < 0) spi->max_speed_hz = save; else dev_dbg(&spi->dev, "%d Hz (max)\n", tmp); } break; default: /* segmented and/or full-duplex I/O request */ if (_IOC_NR(cmd) != _IOC_NR(SPI_IOC_MESSAGE(0)) || _IOC_DIR(cmd) != _IOC_WRITE) { retval = -ENOTTY; break; } tmp = _IOC_SIZE(cmd); if ((tmp % sizeof(struct spi_ioc_transfer)) != 0) { retval = -EINVAL; break; } n_ioc = tmp / sizeof(struct spi_ioc_transfer); if (n_ioc == 0) break; g_uxfers = kmalloc(tmp, GFP_KERNEL); if (!g_uxfers) { printk("g_uxfers alloc failed\n"); } if (__copy_from_user(g_uxfers, (void __user *)arg, tmp)) { kfree(g_uxfers); printk("g_uxfers copy failed\n"); } /* copy into scratch area */ ioc = kmalloc(tmp, GFP_KERNEL); if (!ioc) { retval = -ENOMEM; break; } if (__copy_from_user(ioc, (void __user *)arg, tmp)) { kfree(ioc); retval = -EFAULT; break; } /* translate to spi_message, execute */ retval = spidev_message(spidev, ioc, n_ioc); kfree(ioc); break; } mutex_unlock(&spidev->buf_lock); spi_dev_put(spi); return retval; } static int spidev_open(struct inode *inode, struct file *filp) { struct spidev_data *spidev; int status = -ENXIO; mutex_lock(&device_list_lock); gk_xfers = kcalloc(1, sizeof (*gk_xfers), GFP_KERNEL); if (gk_xfers == NULL) printk("alloc gk_xfers_failed\n"); list_for_each_entry(spidev, &device_list, device_entry) { if (spidev->devt == inode->i_rdev) { status = 0; break; } } if (status == 0) { if (!spidev->buffer) { spidev->buffer = kmalloc(bufsiz, GFP_KERNEL); if (!spidev->buffer) { dev_dbg(&spidev->spi->dev, "open/ENOMEM\n"); status = -ENOMEM; } } if (status == 0) { spidev->users++; filp->private_data = spidev; nonseekable_open(inode, filp); } } else pr_debug("spidev: nothing for minor %d\n", iminor(inode)); mutex_unlock(&device_list_lock); return status; } static int spidev_release(struct inode *inode, struct file *filp) { struct spidev_data *spidev; int status = 0; mutex_lock(&device_list_lock); spidev = filp->private_data; filp->private_data = NULL; /* last close? */ spidev->users--; if (!spidev->users) { int dofree; kfree(spidev->buffer); spidev->buffer = NULL; /* ... after we unbound from the underlying device? */ spin_lock_irq(&spidev->spi_lock); dofree = (spidev->spi == NULL); spin_unlock_irq(&spidev->spi_lock); if (dofree) kfree(spidev); } //disable_irq_nosync(spidev->irq); kfree(gk_xfers); kfree(g_uxfers); mutex_unlock(&device_list_lock); return status; } static const struct file_operations spidev_fops = { .owner = THIS_MODULE, /* REVISIT switch to aio primitives, so that userspace * gets more complete API coverage. It'll simplify things * too, except for the locking. */ .write = spidev_write, .read = spidev_read, .unlocked_ioctl = spidev_ioctl, .open = spidev_open, .release = spidev_release, .poll =gzsd_poll, }; /*-------------------------------------------------------------------------*/ /* The main reason to have this class is to make mdev/udev create the * /dev/spidevB.C character device nodes exposing our userspace API. * It also simplifies memory management. */ static struct class *spidev_class; /*-------------------------------------------------------------------------*/ static int __devinit spidev_probe(struct spi_device *spi) { struct spidev_data *spidev; int status; unsigned long minor; int err; /* Allocate driver data */ spidev = kzalloc(sizeof(*spidev), GFP_KERNEL); if (!spidev) return -ENOMEM; /* Initialize the driver data */ spidev->spi = spi; spin_lock_init(&spidev->spi_lock); mutex_init(&spidev->buf_lock); INIT_LIST_HEAD(&spidev->device_entry); /* If we can allocate a minor number, hook up this device. * Reusing minors is fine so long as udev or mdev is working. */ mutex_lock(&device_list_lock); minor = find_first_zero_bit(minors, N_SPI_MINORS); if (minor < N_SPI_MINORS) { struct device *dev; spidev->devt = MKDEV(SPIDEV_MAJOR, minor); dev = device_create(spidev_class, &spi->dev, spidev->devt, spidev, "spidev%d.%d", spi->master->bus_num, spi->chip_select); status = IS_ERR(dev) ? PTR_ERR(dev) : 0; } else { dev_dbg(&spi->dev, "no minor number available!\n"); status = -ENODEV; } if (status == 0) { set_bit(minor, minors); list_add(&spidev->device_entry, &device_list); } spidev->irq = SPI_IRQ; err = request_irq(spidev->irq, gzsd_spiread, IRQ_TYPE_EDGE_FALLING,"spi", spidev); if(err < 0) { dev_err(&spidev->spi->dev, "Unable to request spi IRQ.\n"); } init_waitqueue_head(&spidev->rqueue); mutex_unlock(&device_list_lock); if (status == 0) spi_set_drvdata(spi, spidev); else kfree(spidev); return status; } static int __devexit spidev_remove(struct spi_device *spi) { struct spidev_data *spidev = spi_get_drvdata(spi); /* make sure ops on existing fds can abort cleanly */ spin_lock_irq(&spidev->spi_lock); spidev->spi = NULL; spi_set_drvdata(spi, NULL); spin_unlock_irq(&spidev->spi_lock); /* prevent new opens */ mutex_lock(&device_list_lock); list_del(&spidev->device_entry); device_destroy(spidev_class, spidev->devt); clear_bit(MINOR(spidev->devt), minors); if (spidev->users == 0) kfree(spidev); mutex_unlock(&device_list_lock); return 0; } static struct spi_driver spidev_spi_driver = { .driver = { .name = "spidev", .owner = THIS_MODULE, }, .probe = spidev_probe, .remove = __devexit_p(spidev_remove), /* NOTE: suspend/resume methods are not necessary here. * We don't do anything except pass the requests to/from * the underlying controller. The refrigerator handles * most issues; the controller driver handles the rest. */ }; /*-------------------------------------------------------------------------*/ static int __init spidev_init(void) { int status; /* Claim our 256 reserved device numbers. Then register a class * that will key udev/mdev to add/remove /dev nodes. Last, register * the driver which manages those device numbers. */ BUILD_BUG_ON(N_SPI_MINORS > 256); status = register_chrdev(SPIDEV_MAJOR, "spi", &spidev_fops); if (status < 0) return status; spidev_class = class_create(THIS_MODULE, "spidev"); if (IS_ERR(spidev_class)) { unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name); return PTR_ERR(spidev_class); } status = spi_register_driver(&spidev_spi_driver); if (status < 0) { class_destroy(spidev_class); unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name); } return status; } module_init(spidev_init); static void __exit spidev_exit(void) { spi_unregister_driver(&spidev_spi_driver); class_destroy(spidev_class); unregister_chrdev(SPIDEV_MAJOR, spidev_spi_driver.driver.name); } module_exit(spidev_exit); MODULE_AUTHOR("Andrea Paterniani, "); MODULE_DESCRIPTION("User mode SPI device interface"); MODULE_LICENSE("GPL"); MODULE_ALIAS("spi:spidev");
位置: drivers/spi
将drivers/spi/Makefile里的spidev.c修改为spidev_gzsd.c
210 spi测试程序如下:
/* * SPI testing utility (using spidev driver) * * Copyright (c) 2007 MontaVista Software, Inc. * Copyright (c) 2007 Anton Vorontsov* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License. * * Cross-compile with cross-gcc -I/path/to/cross-kernel/include */ #include #include #include #include #include #include #include #include #include "spidev.h" //#include #define ARRAY_SIZE(a) (sizeof(a) / sizeof((a)[0])) #define BUF_SIZE 38 #define READ_SIZE (BUF_SIZE + 1) static const char *device = "/dev/spidev0.0"; static uint8_t mode; static uint8_t bits = 8; static uint32_t speed = 140000;//140000; static uint16_t delay; static void transfer(int fd) { int ret; uint8_t tx[] = { 0x01, 0xFD, 0xFC, 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0xF1, 0xF0, 0xEF, 0xEE, 0xED, 0xEC, 0xEB, 0xEA, 0xE9, 0xE8, 0xE7, 0xE6, 0xE5, 0xE4, 0xE3, 0xE2, 0xE1, 0xE0, 0xDF, 0xDE, 0xDD, 0xDC, 0xDB, 0xDA, 0xD9, }; uint8_t rx[ARRAY_SIZE(tx)] = {0, }; struct spi_ioc_transfer tr = { .tx_buf = (unsigned long)tx, .rx_buf = (unsigned long)rx, .len = ARRAY_SIZE(tx), .delay_usecs = delay, .speed_hz = speed, .bits_per_word = bits, }; ret = ioctl(fd, SPI_IOC_MESSAGE(1), &tr); #if 1 if(rx[0] != 0xff) { for (ret = 0; ret < ARRAY_SIZE(tx); ret++) { if (!(ret % 6)) puts(""); printf("%.2d ", rx[ret]); } puts(""); } #endif } static void do_read(int fd, int len) { uint8_t buf[len], bp[len]; int status; /* read at least 2 bytes, no more than 32 */ if (len < 2) len = 2; else if (len > sizeof(buf)) len = sizeof(buf); memset(buf, 0, sizeof buf); status = read(fd, buf, len); if (status < 0) { printf("read error \n"); return; } if (status != len) { fprintf(stderr, "short read\n"); return; } #if 0 printf("read(%2d, %2d): %02x %02x,", len, status, buf[0], buf[1]); status -= 2; bp = buf + 2; while (status-- > 0) printf(" %02x", *bp++); printf("\n"); #else int i; #if 1 printf("do read data is :\n"); for(i = 0;i < len;i++) printf(" %d",buf[i]); printf("\n"); #else for(i = 0;i < (len - 1);i++) { bp[i] = buf[i+1]; } bp[len-1] = buf[0]; printf("data is :\n"); for(i = 0;i < len;i++) printf(" %d",bp[i]); printf("\n"); #endif #endif } static void do_write(int fd,int cmd) { struct spi_ioc_transfer xfer; //unsigned char buf[BUF_SIZE], *bp; uint8_t buf[BUF_SIZE], *bp; int status; int len; uint8_t tx[] = { cmd, (cmd +1), (cmd+2), 0xFB, 0xFA, 0xF9, 0xF8, 0xF7, 0xF6, 0xF5, 0xF4, 0xF3, 0xF2, 0xF1, 0xF0, 0xEF, 0xEE, 0xED, 0xEC, 0xEB, 0xEA, 0xE9, 0xE8, 0xE7, 0xE6, 0xE5, 0xE4, 0xE3, 0xE2, 0xE1, 0xE0, 0xDF, 0xDE, 0xDD, 0xDC, 0xDB, 0xDA, 0xD9, }; //memset(xfer, 0, sizeof xfer); memset(buf, 1, sizeof buf); len = sizeof buf; //buf[0] = cmd; #if 0 buf[0] = cmd; buf[1] = cmd; xfer.tx_buf = (unsigned long)buf; xfer.len = len; status = ioctl(fd, SPI_IOC_MESSAGE(1), xfer); if (status < 0) { printf("SPI_IOC_MESSAGE\n"); return; } //printf("do write data is %d\n",buf[0]); printf("response(%2d, %2d)\n", len, status); #endif status = write(fd,tx,BUF_SIZE); if(status < 0) printf("do write failed\n"); #if 0 for (bp = buf; len; len--) printf(" %02x", *bp++); printf("\n"); #endif } int main(int argc, char *argv[]) { int ret = 0; int fd; int data; fd_set rds; struct timeval tv; #if 0 if(argc < 2) { printf("please enter one parameter at least\n"); return 0; } data = atoi(argv[1]); #else data = 0; #endif fd = open(device, O_RDWR); if (fd < 0) printf("can't open device"); mode = SPI_MODE_1; /* * spi mode */ ret = ioctl(fd, SPI_IOC_WR_MODE, &mode); if (ret == -1) printf("can't set spi mode"); ret = ioctl(fd, SPI_IOC_RD_MODE, &mode); if (ret == -1) printf("can't get spi mode"); /* * bits per word */ ret = ioctl(fd, SPI_IOC_WR_BITS_PER_WORD, &bits); if (ret == -1) printf("can't set bits per word"); ret = ioctl(fd, SPI_IOC_RD_BITS_PER_WORD, &bits); if (ret == -1) printf("can't get bits per word"); /* * max speed hz */ ret = ioctl(fd, SPI_IOC_WR_MAX_SPEED_HZ, &speed); if (ret == -1) printf("can't set max speed hz"); ret = ioctl(fd, SPI_IOC_RD_MAX_SPEED_HZ, &speed); if (ret == -1) printf("can't get max speed hz"); printf("spi mode: %d\n", mode); printf("bits per word: %d\n", bits); printf("max speed: %d Hz (%d KHz)\n", speed, speed/1000); //FD_ZERO(&rds); //FD_SET(fd, &rds); //tv.tv_sec = 10; //tv.tv_usec = 0; int i; while(1) { FD_ZERO(&rds); FD_SET(fd, &rds); tv.tv_sec = 1; tv.tv_usec = 0; printf("send daia is -----------------------%d\n",data); do_write(fd,data); sleep(1); ret = select(fd+1,&rds,NULL,NULL,&tv); if(ret < 0) { printf("select error!\n"); //break; } printf("ret is +++++++++++++++++++%d\n",ret); if (FD_ISSET(fd, &rds)) do_read(fd,BUF_SIZE); data++; if(data > 8) data = 0; sleep(1); } close(fd); return ret; }
这两部分源码下载地址为:点击打开链接
STM32主函数代码:
#include "stm32f10x.h" #include "uart.h" #include "spi.h" void SPItest(void); void UARTtest(USART_TypeDef *port); extern void Uart_SendStringn(USART_TypeDef *port,char *pt,int n); extern void Delay_ARMJISHU(__IO uint32_t nCount); void SPIsend_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; //spi send interrupt control RCC_APB2PeriphClockCmd (RCC_APB2Periph_GPIOC, ENABLE);// 使能PC,AFIO GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; //GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //推挽输出 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP; // GPIO_Init(GPIOC, &GPIO_InitStructure); //end } void send_onoff(int onoff) { if(onoff) GPIO_WriteBit(GPIOC, GPIO_Pin_7, Bit_RESET); else GPIO_WriteBit(GPIOC, GPIO_Pin_7, Bit_SET); } int main(void) { //int i; NVIC_Configuration();//配置 NVIC 和 Vector Table Uart1_COMInit(115200); //串口1连接v210或PC机 SPI1_Init(); SPIsend_Init(); send_onoff(Bit_RESET); Uart_SendString(USART1,"串口1开始:\r\n") ; //串口1接PC机 while (1) { SPItest(); } } void send_data(int mode) { int i; send_onoff(Bit_SET); switch(mode) { case 0x01: for(i=0;i<38;i++) { SPI_I2S_SendData(SPI1,i + 1); } break; case 0x02: for(i=0;i<38;i++) { SPI_I2S_SendData(SPI1,i + 2); } break; case 0x03: for(i=0;i<38;i++) { SPI_I2S_SendData(SPI1,i + 3); } break; default: break; } send_onoff(Bit_RESET); cmd = 0; return; } void SPItest(void) { int i; //static int x=0; if(RxIdx==SPI_BufferSize) //中断方式接收 { cmd = SPI1_Buffer_Rx[0]; for(i=0;i< RxIdx;i++) { Uart_SendByte(USART1,SPI1_Buffer_Rx[i]);//向PC机发送 // SPI_I2S_SendData(SPI1,0xff); SPI1_Buffer_Rx[i]=0; } //while (SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET); //SPI_I2S_SendData(SPI1,x++); //send_onoff(1); //SPI_I2S_ITConfig(SPI1, SPI_I2S_IT_RXNE, ENABLE); //Delay_ARMJISHU(10000000); RxIdx=0; SPI_I2S_ITConfig(SPI1, SPI_I2S_IT_RXNE, ENABLE); } if(cmd) send_data(cmd); //查询方式接收: /* while (SPI_I2S_GetFlagStatus(SPI3, SPI_I2S_FLAG_RXNE) == RESET); SPI3_Buffer_Rx[RxIdx++] = SPI_I2S_ReceiveData(SPI3); if(RxIdx==SPI_BufferSize) { for(i=0;i< RxIdx;i++) { Uart_SendByte(USART1,SPI3_Buffer_Rx[i]);//向PC机发送 } RxIdx=0; } */ } void UARTtest(USART_TypeDef *port) { int i; for(i=0;i<10;i++) Uart_SendByte(port,'0'+i); Delay_ARMJISHU(10000000); }具体代码我就不作说明了
上一篇:STM32 SPI接口的简单实现
下一篇:S3C2410与指纹传感器MBF200的SPI通信
推荐阅读最新更新时间:2024-03-16 14:56