基于步进电机驱动器MC33991的设计

发布者:Meiren520最新更新时间:2016-06-03 来源: eefocus关键字:步进电机  驱动器  MC33991 手机看文章 扫描二维码
随时随地手机看文章
  步进电机式仪表与模拟电路电子式仪表相比,其分度均匀,指针的重复性能好、响应速度快、抖动小、产品品质的稳定性和可靠性有根本保证[1] ,因此步进电机式汽车仪表在我国逐渐普及。这种汽车仪表通常采用微控制器驱动步进电机带动仪表指针转动。微控制器控制步进电机一般需要外加驱动电路,而采用专用的汽车仪表步进电机驱动集成电路可以简化汽车仪表的软硬件设计,提高仪表的稳定性和可靠性。本文介绍并比较了国内常用的驱动器的性能特点,最后以飞思卡尔半导体生产的MC33991为实例设计了车速表。

  1 常用仪表电机驱动芯片特点及性能比较

  国内常用的仪表步进电机驱动芯片包括瑞典SWITEC公司的X12.017、伟盈集团生产的VID66- 06和美国飞思卡尔公司生产的MC33991等。

  1.1 X12.017与VID66- 06的主要特点

  SWITEC公司生产的X12.017在国内应用较广,可以同时驱动4路十字线圈步进电机。VID66- 06控制方式和X12.017完全相同,其各项性能参数也基本相同。它们的主要特点如下。

  a.以微步驱动,每个脉冲对应电机输出轴转动(1/12)°。

  b.每个电机只需要速度和方向2个控制端。

  c.所有输入脚都有干扰过滤器;低电磁干扰辐射。

  d.工作温度在- 40~105℃;工作电压4.5~5.5 V.

  这种驱动器控制简单,输入信号CW/CCW控制步进电机的转动方向,输入信号F( scx)的上升沿驱动电机转动一个微步。通过发送脉冲的频率可以控制电机的转动速度。

  1.2 MC33991的主要特点

  MC33991是单独封装,通过SPI (串行外设接口)进行通信,可同时控制2个步进电机的驱动电路。该电路也可以仿照气隙磁通的运动,把普通电机转化为步进电机来控制。它有以下主要特点[3].

  a.有4 096个静态指示位置,接收位置命令后驱动指针指示。

  b.最大指针扫过范围340度;最大指针速度为400 deg/s;最大指针加速度为4 500 deg/s.

  c.应用微步距控制技术(每步细分为12个微步)。

  d.指针回零校准,能准确地回零。

  e. 16位SPI ( Serial Peripheral Interface) ,通信占用较少的I /O口。

  f.内部时钟校准功能;睡眠模式下的耗电量较小。

  g.工作温度- 40~125℃;供电电压范围6.5~26 V。

  MC33991可设定步进电机最大转速。其具有内部状态机,保证在正常操作时,驱动器接收到位置命令后,以恒定加速度到达最大速度,然后在合适的时间减速,并保证减速过程中不超过最大减速度,到达指定位置后速度等于零,避免指针抖动。此外, MC33991可以允许2个步进电机或其中之一工作。其内部诊断功能可诊断单个步进电机是否过热、电池电压过高或者过低、指针归零状态驱动器内部时钟的工作状态、确定仪表的指针是否在转动。由以上性能特点可以看出, MC33991比X12.017和VID66-06功能更丰富,如过电压和过热诊断功能、回零校验功能。且使用X12.017和VID66-06作为驱动时,为使仪表指针运行平滑,必须在微控制器程序中对步进电机速度进行细分,否则容易产生超调抖动。

  2采用MC33991的汽车车速表设计

  汽车在行驶过程中,汽车车速传感器产生频率与汽车车速成正比的脉冲信号,此脉冲信号经过滤波放大后送给微控制器,微控制器利用输入捕捉通道捕捉2次脉冲信号的间隔时间,并根据间隔时间计算汽车行驶速度。最后,微控制器把计算得到的速度转换成位置命令发送给MC33991, MC33991驱动步进电机指向对应的刻度。

  本设计选用微控制器MC68HC908GR16作为主控芯片,采用SWITEC公司生产的仪表用步进电机X15.288作为执行器。MC68HC908GR16是飞思卡尔半导体公司生产的8位微控制器,片内具有16 KBFLASH存储器和1 KB RAM存储器。其内部锁相环( PLL)可以把外部32.768 kHz晶振频率升频至8 MHz内部总线频率。微控制器内部集成了增强的串行通信模块( ESCI)、8路10位A/D模块、SPI模块、8位键盘模块,拥有2个独立的16位定时器,每个定时器都由1个定时计数器和2个输入输出通道组成。其内部还集成了定时基模块,可以定时把微控制器从STOP模式中唤醒。

  MC33991内部有6个寄存器,微控制器通过发送16位的SPI命令到这些寄存器来控制并读取MC33991的工作状态。16位SPI数据的15~13位是地址, MC33991接收到微控制器的命令后,把命令的15~13位与这些地址对比,并把数据放到对应的寄存器。这些寄存器的地址与功能如表1所列。微控制器通过这些寄存器来控制电机的最大速度、指针位置、指针回零,并读取电机的运行状态、线圈是否过热、电压是否过高或过低。

  2.1硬件电路设计

  硬件电路包括速度传感器信号调理电路、微控制器与MC33991的接口电路。

  2.1.1速度脉冲检测电路

  车速传感器把车速信号转化为脉冲信号,其频率与车速成正比。此脉冲信号经过调理电路送给单片机的T1 CH0 ( Timer 1 channel 0) ,速度脉冲的调理电路如图1所示。在没有脉冲信号输入时,三极管集电极和发射极关断,脉冲调理电路输出高电平。有脉冲输入时,三极管导通,调理电路输出跳变到低电平。

  2.1.2 MC33991接口电路

  微控制器MC68HC908GR16与MC33991利用串行外设接口SPI通信。微控制器、MC33991和仪表用步进电机的接口电路如图2所示。

   基于步进电机驱动器MC33991的设计
 

 

  表1 MC33991内部寄存器

   基于步进电机驱动器MC33991的设计
 

  图1 速度传感器信号调理电路图

  

基于步进电机驱动器MC33991的设计
 

  图2 MC33991与MCU接口电路图

  MC68HC908GR16的SPI时钟引脚SPSCK、主机数据输入从机输出引脚MISO、主机数据输出从机输入引脚MOSI和I /O引脚PTC5, 分别接MC33991的SCLK、SO、SI、CS引脚, RSTB引脚与单片机的RST引脚连接。

  2.2 软件设计

  2.2.1 SPI通信程序

  微控制器MC68HC908GR16 上电后要初始化MC33991。MC68HC908GR16的SPI设为主模式。发送数据的格式要符合MC33991接、发数据的时序,MC33991收发数据的时序如图3所示。SPI无数据传输时CS=1, 时钟信号保持低电平。有数据传输时,MC33991的SI引脚在SCLK时钟的下降沿读入1位数据, 而输出引脚SO在时钟的上升沿输出数据。设MC68HC908GR16的SPCR寄存器时钟极性位COPL=0,时钟相位控制位CPHA=1。设引脚PTC5方向寄存器DDRC5=1, 设为输出。不与MC33991通信时令PTC5保持高电平。MC33991每次接收的数据必须是16,32, 48⋯位。

  

   基于步进电机驱动器MC33991的设计
 

  2.2.2 MC33991初始化流程

  MC33991的初始化流程图如图4所示。微控制器先向PECCR发送命令关闭步进电机, 并在2个电机停止转动的情况下发送时钟校正命令。经过时钟校正后, MC33991内部时钟稳定在1 MHz ( ±10%) ,校正时钟后使能电机, 可允许2个或者其中一个工作, 然后向寄存器RTZCR发送命令设置指针回零速度, 向VECR寄存器发送命令控制电机的最大转速。如果步进电机回零时指针不在一个整步位置或者磁场排列没有对齐, MC33991回零检测会发生错误,导致回零失败。所以在发送电机回零命令前, 先使电机前进24微步或者30, 36, 42⋯微步, 以保持磁场排列整齐, 然后发送指针回零命令, 指针转向电机的逆时针极端。每一时刻只能有一个指针回零,微控制器检测回零状态直至回零结束。

  

基于步进电机驱动器MC33991的设计
 

 初始化时需要注意, 时钟校正可选为1 MHz,单片机发送完时钟校正命令后拉低引脚, 延时8 μs后再将其拉高。如果电机的齿轮减速比较低则选择0.667 MHz, 这种情况需要延时12 μs。

  2.2.3 车速检测

  MC33991初始化后设MC68HC908GR16的定时器1通道零为输入捕捉模式, 在输入脉冲的下降沿进入捕捉中断, 并计算2次下降沿的计数差值Δt。本设计的车速仪表盘的最大车速为120 km/h,最高速度与最低速度对应刻度盘的夹角为225 °, 对应MC33991的静态指示位为2 700。

  汽车行驶速度可以利用以下公式计算

   基于步进电机驱动器MC33991的设计
 

 

  式中: n———2次速度脉冲间隔内计数器的计数值之差; T———微控制器计数器时钟源的周期;D———车轮外径; μ———汽车轮胎变形系数( 一般取0.93~0.96) ; N———车轮转一周, 车速传感器发送的脉冲数。

  微控制器根据计算得到的速度在仪表盘上的位置, 计算出MC33991的静态指示位置, 并把静态指示位发给MC33991, MC33991驱动仪表指向指定位置。为加快程序运行速度, 先根据车速、汽车车速仪表盘的参数计算出一个常数Con。

   基于步进电机驱动器MC33991的设计
 

  式中: vmax———汽车仪表盘指示的最大速度;C———用于调整指针指示误差的常数。其中C用来调整车速表的指示位置, 使仪表指示速度不小于汽车的实际速度。车速表指针应指向

  的位置P0=Δt /Con, 由微控制器直接向MC33991发送此位置( P0) 命令, MC33991接到位置命令后即控制仪表电机旋转, 指向刻度盘的对应位置。

  3 结束语

  本文详细介绍了一种汽车车速表的设计方案,设计采用专用集成驱动芯片MC33991。此表在试验台运行测试时, 指针可以平滑转动, 在加速度较高时也没有超调抖动。与传统机械式仪表相比, 这种仪表响应速度快、抖动小、产品的稳定性和可靠性高。与采用其它驱动芯片的步进电机式仪表相比,首先此表占用硬件资源少, 控制方便, 仪表响应快; 其次能从任意位置以设定的速度恒速回零, 到达零点时无抖动; 最后仪表转动时, 微控制器可以随时通过MC33991读取步进电机的工作状态。

关键字:步进电机  驱动器  MC33991 引用地址:基于步进电机驱动器MC33991的设计

上一篇:MSP430单片机外部中断
下一篇:两单片机间的串口通信

推荐阅读最新更新时间:2024-03-16 14:56

三相步进电机发生绕组工作通电原理及特点
三相绕组中的通电顺序为:A 相-B 相- C 相。 A 相通电,A 方向的磁通经转子形成闭合回路。若转子和 磁场轴线 方向原有一定角度,则在磁场的作用下,转子被磁化,吸引转子,使转子的位置力图使通电相磁路的磁阻最小,使转、定子的齿对齐停止转动。 A 相通电使转子1、3齿和AA' 对齐。 同理,B相通电,转子2、4齿和B相轴线对齐,相对A相通电位置转30°;C相通电再转30°。 山社电机工程师认为这种工作方式,因三相绕组中每次只有一相通电,而且,一个循环周期共包括三个脉冲,所以称三相单三拍。 三相单三拍的特点: (1)每来一个电脉冲,转子转过30°。此角称为步距角,用qS表示。 (2)转子的旋转方向取决
[嵌入式]
如何尽量减小步进电机发热
  首先,要了解步进电机为什么会发热   对于各种步进电机而言,内部都是由铁芯和绕组线圈组成的。绕组有电阻,通电会产生损耗,损耗大小与电阻和电流的平方成正比,这就是我们常说的铜损,如果电流不是标准的直流或正弦波,还会产生谐波损耗;铁心有磁滞涡流效应,在交变磁场中也会产生损耗,其大小与材料,电流,频率,电压有关,这叫铁损。铜损和铁损都会以发热的形式表现出来,从而影响电机的效率。步进电机一般追求定位精度和力矩输出,效率比较低,电流一般比较大,且谐波成分高,电流交变的频率也随转速而变化,因而步进电机普遍存在发热情况,且情况比一般交流电机严重。   再者,将步进电机发热控制在合理范围内   电机发热允许到什么程度,主要取决于电机内部绝
[嵌入式]
Diodes多通道负载电流汲入驱动器 比标准器件省十二倍耗电量
    Diodes公司 (Diodes Incorporated) 推出两款驱动器ULN2003V12及ULN2003F12。ULN2003V12为七通道继电和电感负载电流汲入型驱动器,可直接替代行业标准器件并减少耗电量达十二倍。ULN2003F12是四通道版本,在驱动低压步进电机等要求较少输出通道时会缩减占位面积 。   ULN2003V12为七通道继电和电感负载电流汲入型驱动器,可直接替代其它厂商同类型行业标准ULN2003A产品,并节省十二倍耗电量。四通道的ULN2003F12则可在驱动低压步进电机等要求较少输出通道的情况下,提供更小巧的解决方案。两款器件的目标市场包括洗衣机和洗碗机等家用电器。   ULN2
[手机便携]
利用智能MOSFET驱动器提升数字控制电源性能
利用智能MOSFET驱动器提升数字控制电源性能 在电源系统中,MOSFET驱动器一般仅用于将PWM控制IC的输出信号转换为高速的大电流信号,以便以最快的速度打开和关闭MOSFET。由于驱动器IC与MOSFET的位置相邻,所以就需要增加智能保护功能以增强电源的可靠性。   UCD9110或UCD9501等新上市的数字电源控制器需要具备新型的智能型集成MOSFET驱动器的支持。电源设计人员仍然对数字电源控制技术心存疑虑。他们经常将PC的蓝屏现象归咎于软件冲突。当然,这种争议会阻碍数字控制电源以及查找控制器故障期间功率级保护策略的推广。这推动了不依赖数字电源控制器信号的具备功率级内部保护功能的MOSFET驱动器的发展。 点击看
[模拟电子]
利用智能MOSFET<font color='red'>驱动器</font>提升数字控制电源性能
步进电机控制芯片UDN2916LB原理及应用
UDN2916LB是SANKEN公司推出的一款两相步进电机双极驱动集成电路,能够驱动双绕组双极步进电机,特别适用于目前国内税控市场双步进微型打印机电机的控制。 UDN2916LB适用的电机电压范围为10~45V,逻辑电压不能超过7V;通过内部脉宽调制控制器(PWM)可实现最大750mA的输出电流;内置1/3和2/3分割器;逻辑输入实现1相/2相/W1-2phase激励模式;内置过热和交叉电流保护功能;集成钳位二极管;内置防止低压误操作等保护功能。UDN2916LB内部结构如图所示,芯片有两组电路构成,每组电路由PWM控制器、电桥及辅助电路组成。 图1 UDN2916LB内部结构框图 PWM电流控制电路 每个PWM控制器由
[单片机]
<font color='red'>步进电机</font>控制芯片UDN2916LB原理及应用
大联大世平集团推出基于onsemi产品的直流无刷电机(BLDC)驱动器方案
2022年10月11日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下世平推出基于安森美(onsemi)NCP81075 MOSFET驱动器和运算放大器的直流无刷电机(BLDC)驱动器方案。 图示1-大联大世平基于onsemi产品的直流无刷电机(BLDC)驱动器方案的展示板图 随着应用智能化趋势日益显著,无刷直流电机的高能效、长寿命等优势逐渐被市场认知,并广泛运用在各种领域之中。据相关统计显示,近几年无刷直流电机行业收入逐年增加,电机市场以交流电机、有刷直流电机为主的格局正在被无刷直流电机所打破。在这种趋势下,大联大世平基于onsemi NCP81075 MOSFET驱动器和运算放大器推出了直流
[工业控制]
大联大世平集团推出基于onsemi产品的直流无刷电机(BLDC)<font color='red'>驱动器</font>方案
Credo推出业界首款单片集成CMOS VCSEL驱动器的800G光DSP芯片
针对AOC及短距(SR)光模块优化的新型Credo DSP,适用于下一代超大规模数据中心/AI应用 加州圣何塞和中国深圳,2023年9月6日—— Credo Technology(纳斯达克股票代码:CRDO)今日发布两款新品:集成VCSEL驱动的 Dove 800D及Dove 410D PAM4 光DSP芯片 。该两款芯片可加速客户产品的上市进度,为解决超大数据中心、AI后端集群以及通用计算网络日益增长的带宽需求而设计。Dove 800D (8x100G)及Dove 410D(4x100G)使用了Credo第四代DSP技术,是经过优化的、高性能、体积小巧的产品,可以满足超级数据中心日益严格的能耗要求。Dove 800D和
[嵌入式]
Credo推出业界首款单片集成CMOS VCSEL<font color='red'>驱动器</font>的800G光DSP芯片
英特尔修复迅驰芯片漏洞 影响无线产品安全
  近日,英特尔推出三个补丁,修复了迅驰(Centrino)产品驱动器和ProSet管理软件存的的漏洞。这种漏洞,会影响无线产品的安全性能。   英特尔呼吁用户尽快升级这三个漏洞。据Sans互联网风暴中心和F-Secure称,一个漏洞可能会使攻击者通过Wi-Fi或是建立蠕虫的形式进入PC,从一个无线笔记本电脑进入另一个。另外一个漏洞使系统变得易受攻击,恶意用户可以获得进入电脑的权限。   据英特尔安全顾问称,英特尔补丁主要强调存在于IntelPRO/Wireless 2200BG、2915ABG、2100和3945ABG Network Connection中的问题。漏洞涉及英特尔Centrino无线驱动器,可导致攻击乾通过W
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
热门活动
换一批
更多
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved