ARM学习笔记--GPIO接口

发布者:jingyun最新更新时间:2016-07-19 来源: eefocus关键字:ARM  GPIO接口 手机看文章 扫描二维码
随时随地手机看文章
       GPIO(General Purpose I/O Ports)意思为通用输入/输出端口,通俗地说,就是一些引脚,可以通过它们输出高低电平或者通过它们读入引脚的状态-是高电平或是低电平。

       S3C2410共有117个I/O端口,共分为A~H共8组:GPA、GPB、...、GPH。S3C2440共有130个I/O端口,分为A~J共9组:GPA、GPB、...、GPJ。可以通过设置寄存器来确定某个引脚用于输入、输出还是其他特殊功能。比如:可以设置GPH6作为输入、输出、或者用于串口。

1 GPIO硬件介绍

1.1 通过寄存器来操作GPIO引脚

       GPxCON用于选择引脚功能,GPxDAT用于读/写引脚数据;另外,GPxUP用于确定是否使用内部上拉电阻。x为B、...、 H/J,没有GPAUP寄存器。

1.1.1 GPxCON寄存器

       从寄存器的名字可以看出,它用于配置(Configure)-选择引脚功能。

       PORTA与PORTB~PORT H/J在功能选择方面有所不同,GPACON中每一位对应一根引脚(共23根引脚)。当某位被设为0时,相应引脚为输出引脚,此时我们可以在GPADAT 中相应位写入0或是1让此引脚为低电平或高电平;当某位被设为1时,相应引脚为地址线或用于地址控制,此时GPADAT无用。一般而言,GPACON通常被设为全1,以便访问外部存储器件。

       PORT B~ PORT H/J在寄存器操作方面完全相同。GPxCON中每两位控制一根引脚:00表示输入、01表示输出、10表示特殊功能、11保留不用。

1.1.2 GPxDAT寄存器

       GPxDAT用于读/写引脚;当引脚被设为输入时,读此寄存器可知相应引脚的电平状态是高还是低;当引脚被设为输出时,写此寄存器相应位可以令此引脚输出高电平或是低电平。

1.1.3 GPxUP寄存器

       GPxUP:某位为1时,相应引脚无内部上拉电阻;为0时,相应引脚使用内部上拉电阻。

       上拉电阻的作用在于:当GPIO引脚处于第三态(即不是输出高电平,也不是输出低电平,而是呈高阻态,即相当于没接芯片)时,它的电平状态由上拉电阻、下拉电阻确定。

1.2 访问硬件

1.2.1 访问单个引脚

       单个引脚的操作无外乎3种:输出高低电平、检测引脚状态、中断。对某个引脚的操作一般通过读、写寄存器来完成。

       访问这些寄存器是通过软件来读写它们的地址。比如:S3C2410和S3C2440的GPBCON、GPBDAT寄存器地址都是0x56000010、0x56000014,可以通过如下的指令让GPB5输出低电平。

#define GPBCON (*volatile unsigned long *)0x56000010)   //long=int 4字节;char 1字节;short 2字节

#define GPBDAT (*volatile unsigned long *)0x56000014)

#define GPB5_out (1<<(582))

GPBCON = GPB5_out;

GPBDAT &= ~(1<<5);

1.2.2 以总线方式访问硬件

       并非只能通过寄存器才能发出硬件信号,实际上通过访问总线的方式控制硬件更为常见。如下图所示S3C2410/S3C2440与NOR Flash的连线图,读写操作都是16位为单位。

       图中缓冲器的作用是以提搞驱动能力、隔离前后级信号。NOR Flash(AM29LV800BB)的片选信号使用nGCS0信号,当CPU发出的地址信号处于0x00000000~0x07FFFFFF之间时,nGCS0信号有效(为低电平),于是NOR Flash被选中。这时,CPU发出的地址信号传到NOR Flash;进行写操作时,nWE信号为低,数据信号从CPU发给NOR Flash;进行读操作时,nWE信号为高,数据信号从NOR Flash发给CPU。

       ADDR1~ADDR20 ------------------>   >--------------------A0~A19

       DATA0~DATA15 <----------------->   <------------------->D0~D15

               nOE  ------------------>   -------------------->nOE

               nWE  ------------------>   -------------------->nWE

              nGCS0 ------------------>   -------------------->nCE

         S3C2410/S3C2440              缓冲器                   NOR Flash(AM29LV800BB)

         软件如何发起写操作呢,下面有几个例子的代码进行讲解。

1)地址对齐的16位读操作

unsigned short *pwAddr = (unsigned short *)0x2;

unsigned short uwVal;

uwVal = *pwAddr;

       上述代码会向NOR Flash发起读操作:CPU发出的读地址为0x2,则地址总线ADDR1~ADDR20、A0~A19的信号都是1、0...、0(CPU的ADDR0 为0,不过ADDR0没有接到NOR Flash上)。NOR Flash的地址就是0x1,NOR Flash在稍后的时间里将地址上的16位数据取出,并通过数据总线D0~D15发给CPU。

2)地址位不对齐的16位读操作

unsigned short *pwAddr = (unsigned short *)0x1;

unsigned short uwVal;

uwVal = *pwAddr;

       由于地址是0x1,不是2对齐的,但是BANK0的位宽被设为16,这将导致异常。我们可以设置异常处理函数来处理这种情况。在异常处理函数中,使用 0x0、0x2发起两次读操作,然后将两个结果组合起来:使用地址0x0的两字节数据D0、D1;再使用地址0x02读到D2、D3;最后,D1、D2组合成一个16位的数字返回给wVal。如果没有地址不对齐的异常处理函数,那么上述代码将会出错。如果某个BANK的位宽被设为n,访问此BANK时,在总线上永远只会看到地址对齐的n位操作。

3)8位读操作

unsigned char *pwAddr = (unsigned char *)0x6;

unsigned char ucVal;

ucVal = *pwAddr;

       CPU首先使用地址0x6对NOR Flsh发起16位的读操作,得到两个字节的数据,假设为D0、D1;然后将D0取出赋值给变量ucVal。在读操作期间,地址总线 ADDR1~ADDR20、A0~A19的信号都是1、1、0、...、0(CPU的ADDR0为0,不过ADDR0没有接到NOR Flash上)。CPU会自动丢弃D1。

4)32位读操作

unsigned int *pwAddr = (unsigned int *)0x6;

unsigned int udwVal;

udwVal = *pwAddr;

       CPU首先使用地址0x6对NOR Flsh发起16位的读操作,得到两个字节的数据,假设为D0、D1;再使用地址0x8发起读操作,得到两字节的数据,假设为D2、D3;最后将这4个数据组合后赋给变量udwVal。

5)16位写操作

unsigned short *pwAddr = (unsigned short *)0x6;

*pwAddr = 0x1234;

       由于NOR Flash的特性,使得NOR Flash的写操作比较复杂——比如要先发出特定的地址信号通知NOR Flash准备接收数据,然后才发出数据等。不过,其总线上的电信号与软件指令的关系与读操作类似,只是数据的传输方向相反。

2、使用软件来访问硬件

当个引脚的操作有3种:输出高低电平、检测引脚状态、中断。对某个引脚的操作一般通过读写寄存器实现

首先我们从点亮LED开始,下图选自mini2440原理图,LED1-4分别对应GPB5-8

如果要控制这些LED,那么我们首先要把GPBCON寄存器中GPB5-8对应的位设为输出功能,然后写GPBDAT寄存器的相应位,使这4个引脚输出高低电平

一般是低电平有效,即高电平时,对应LED熄灭,低电平时,对应LED点亮

访问寄存器的时候,通过S3C2440的数据手册查到GPBCON和GPBDAT寄存器的地址,附数据手册  点击下载

 GPBCON为0x56000010,GPBDAT为0x56000014

通过下面的代码让GPB5输出低电平,点亮LED1

#define GPBCON (*(volatile unsigned long *) 0x56000010)        //volatile修饰符确保每次去内存中读取变量的值,还不是从cache或者寄存器中

#define GPBDAT (*(volatile unsigned long *) 0x56000014)       

#define GPB5_OUT (1<<(5*2))        //两位控制一个引脚,那么GPB5就是GPBCON的[11:10]位,1左移10位,则[11:10]为01,表示GPB5为输出

GPBCON = GPB5_OUT;

GPBDAT &= ~(1<<5);        //1左移5位取反,那么第5位为0,即GPB5输出低电平,点亮LED1

二、GPIO操作实例

1、使用汇编代码点亮一个LED

先看源程序 led_on.S

.text

.global _start

_start:     

            LDR     R0,=0x56000010      @ R0设为GPBCON寄存器

            MOV     R1,#0x00000400      @ 设置GPB5为输出口, 位[11:10]=0b01

            STR     R1,[R0]             

            LDR     R0,=0x56000014      @ R0设为GPBDAT寄存器

            MOV     R1,#0x00000000      @ 此值改为0x00000020,可让LED1熄灭

            STR     R1,[R0]                        @ GPB5输出0,LED1点亮

MAIN_LOOP:

            B       MAIN_LOOP                  @无限循环

 再来看程序的Makefile

led_on.bin : led_on.S

arm-linux-gcc -g -c -o led_on.o led_on.S

arm-linux-ld -Ttext 0x0000000 -g led_on.o -o led_on_elf

arm-linux-objcopy -O binary -S led_on_elf led_on.bin

clean:

rm -f   led_on.bin led_on_elf *.o

led_on.S生成led_on.bin

第一行做汇编

第二行做连接,指定代码段起始地址为0x00000000

第三行把ELF格式转为二进制格式

clean用于清除编译生成的文件

2、使用c语言代码点亮LED
汇编可读性比C差,我们用C来实现
 
@******************************************************************************
@ File:crt0.S
@ 功能:通过它转入C程序
@******************************************************************************       
 
.text
.global _start
_start:
            ldr     r0, =0x53000000     @ WATCHDOG寄存器地址
            mov     r1, #0x0                     
            str   r1, [r0]                          @ 写入0,禁止WATCHDOG,否则CPU会不断重启
        
            ldr     sp, =1024*4             @ 设置堆栈,注意:不能大于4k, 因为现在可用的内存只有4K,这4k是steppingstone,后面会介绍
                                                         @ nand flash中的代码在复位后会移到内部ram中,此ram只有4K
            bl      main                          @ 调用C程序中的main函数
halt_loop:
            b       halt_loop
 
下面是led_on_c.c
 
#define GPBCON      (*(volatile unsigned long *)0x56000010)
#define GPBDAT      (*(volatile unsigned long *)0x56000014)
 
int main()
{
    GPBCON = 0x00000400;    // 设置GPB5为输出口, 位[11:10]=0b01
    GPBDAT = 0x00000000;    // GPB5输出0,LED1点亮
 
    return 0;
}

 最后是Makefile

led_on_c.bin : crt0.S  led_on_c.c

arm-linux-gcc -g -c -o crt0.o crt0.S

arm-linux-gcc -g -c -o led_on_c.o led_on_c.c

arm-linux-ld -Ttext 0x0000000 -g  crt0.o led_on_c.o -o led_on_c_elf

arm-linux-objcopy -O binary -S led_on_c_elf led_on_c.bin

arm-linux-objdump -D -m arm  led_on_c_elf > led_on_c.dis

clean:

rm -f led_on_c.dis led_on_c.bin led_on_c_elf *.o

分别汇编crt0.S和led_on_c.c

连接目标到led_on_c_elf,代码段起始地址位0x00000000

转换ELF格式到二进制led_on_c.bin

最后转换结果为汇编码方便查看

3、测试程序

在先前搭建的编译环境中进入代码目录

#make

得到的bin文件,在win中使用dnw下载到开发板,设置串口波特率,对应端口,8N1,下载地址0x00000000

开关拨到nor flash,打开电源,出现菜单以后,选择a

然后选择USB PORT-transmit/restore,选择编译好的bin文件

然后开关拨到nand启动,效果如下:(设置LED1和LED4亮)

4、使用按键来控制LED

K1-K6如上图对应GPG,我们使用K1-K4操作LED1-LED4

@******************************************************************************
@ File:crt0.S
@ 功能:通过它转入C程序
@******************************************************************************       
 
.text
.global _start
_start:
            ldr     r0, =0x56000010     @ WATCHDOG寄存器地址
            mov     r1, #0x0                     
            str   r1, [r0]                          @ 写入0,禁止WATCHDOG,否则CPU会不断重启
        
            ldr     sp, =1024*4             @ 设置堆栈,注意:不能大于4k, 因为现在可用的内存只有4K,这4k是steppingstone,后面会介绍
                                                         @ nand flash中的代码在复位后会移到内部ram中,此ram只有4K
            bl      main                          @ 调用C程序中的main函数
halt_loop:
            b       halt_loop
 
下面是key_led.c文件
 
#define GPBCON      (*(volatile unsigned long *)0x56000010)
#define GPBDAT      (*(volatile unsigned long *)0x56000014)
 
#define GPGCON      (*(volatile unsigned long *)0x56000060)
#define GPGDAT      (*(volatile unsigned long *)0x56000064)
 
/*
 * LED1-4对应GPB5、GPB6、GPB7、GPB8
 */
#define GPB5_out        (1<<(5*2))
#define GPB6_out        (1<<(6*2))
#define GPB7_out        (1<<(7*2))
#define GPB8_out        (1<<(8*2))
 
/*
 * K1-K4对应GPG0、GPG3、GPG5、GPG6
 */
#define GPG7_in    ~(3<<(6*2))
#define GPG6_in     ~(3<<(5*2))
#define GPG3_in     ~(3<<(3*2))
#define GPG0_in     ~(3<<(0*2))
 
int main()
{
        unsigned long dwDat;
        // LED1-LED4对应的4根引脚设为输出
        GPBCON = GPB5_out | GPB6_out | GPB7_out | GPB8_out ;
 
        // K1-K4对应的2根引脚设为输入
        GPGCON = GPG0_in & GPG3_in & GPG6_in & GPG7_in ;
        
 
        while(1){
            //若Kn为0(表示按下),则令LEDn为0(表示点亮)
            dwDat = GPGDAT;             // 读取GPG管脚电平状态
        
            if (dwDat & (1<<0))        // K1没有按下
                GPBDAT |= (1<<5);       // LED1熄灭
            else    
                GPBDAT &= ~(1<<5);      // LED1点亮
                
            if (dwDat & (1<<3))         // K2没有按下
                GPBDAT |= (1<<6);       // LED2熄灭
            else    
                GPBDAT &= ~(1<<6);      // LED2点亮
            
            if (dwDat & (1<<5))         // K3没有按下
                GPBDAT |= (1<<7);       // LED3熄灭
            else    
                GPBDAT &= ~(1<<7);      // LED3点亮
    
            if (dwDat & (1<<6))         // K4没有按下
                GPBDAT |= (1<<8);       // LED4熄灭
            else    
                GPBDAT &= ~(1<<8);      // LED4点亮
    }
 
    return 0;
}
 
最后是Makefile
 
key_led.bin : crt0.S  key_led.c
arm-linux-gcc -g -c -o crt0.o crt0.S
arm-linux-gcc -g -c -o key_led.o key_led.c
arm-linux-ld -Ttext 0x0000000 -g  crt0.o key_led.o -o key_led_elf
arm-linux-objcopy -O binary -S key_led_elf key_led.bin
arm-linux-objdump -D -m arm  key_led_elf > key_led.dis
clean:
rm -f   key_led.dis key_led.bin key_led_elf *.o

关键字:ARM  GPIO接口 引用地址:ARM学习笔记--GPIO接口

上一篇:ARM学习笔记--初识uC/OS(一)
下一篇:ARM移植之BootLoader(1)

推荐阅读最新更新时间:2024-03-16 15:00

突破ARM/MIPS包夹 晶心科技抢滩中国
    在安谋国际(ARM)与美普思(MIPS)两强夹击下,晶心科技正另辟蹊径,试图将炮火瞄准中国大陆利基市场如触控等,预计已通过授权的触控萤幕控制器客户,2011年底前将会陆续导入量产,另外,展讯通信、海思半导体、锐迪科微电子、格科微电子、泰景科技等中国大陆前十大IC设计公司亦为该公司密切锁定的目标客户群。       晶心科技技术长兼研发副总经理苏泓萌表示,晶心科技从台湾客户已跨足的通讯、影像处理、多媒体等应用领域为基础,正逐步拓展中国大陆SoC市场。 晶心科技技术长兼研发副总经理苏泓萌表示,为突破安谋国际和美普思重围,晶心科技计划将主力市场瞄准中国大陆利基型应用,如触控等,除出货给中国大陆触控萤幕控制器厂商,并预计于年底前相
[手机便携]
ARM为什么功耗很低?
ARM的功耗低的原因说到头就是乱序执行能力不如X86。换句话说,就是用户在使用电脑的时候,他的操作是随机的,无法预测的,造成了指令也无法预测。X86为了增强对这种情况下的处理能力,加强了乱序指令的执行还增强了单核的多线程能力。这样做的缺点就是,无法很有效的关闭和恢复处理器子模块,因为一旦关闭,恢复起来就很慢。为了保持高性能,就不得不让大部分的模块都保持开启,并且时钟也保持高速切换。直接后果就是耗电高。而ARM的RISC指令优化强在确定次序的执行,并且依靠多核而不是单核多线程来执行,这样容易保持子模块和时钟信号的关闭,显然就更省电。此外,在操作系统 级别,个人电脑上通常会开很多线程。而移动平台通常只保持必要的线程。这样使得耗电差距进一
[单片机]
爆料:台积电300人的团队配合苹果自研Arm架构处理器
在今晚苹果的WWDC大会上,除了iOS 14、Mac OS系统之外,最受人关注的一件事便是苹果推出Arm处理器取代使用15年之久的x86处理器了。据悉,苹果公司已经在mac电脑上测试了基于Arm的芯片,发现其性能比英特尔的替代品有了很大提高。 熟悉台积电的供应链消息人士@手机晶片达人在微博上表示,台积电有一个超过300人的专属团队(涵盖研发,设计,先进工艺,封装)在与苹果深度合作开发苹果 PC,NB...等产品下一代的CPU (不是以往的手机AP)。 与此同时,@手机晶片达人还爆料称,苹果觉得目前的绘图芯片功耗都太大,因此也在研发自己的绘图芯片,预计2022完成,采用台积电的N5P工艺。 在过去的几年中,英特尔曾多次出现处
[手机便携]
爆料:台积电300人的团队配合苹果自研<font color='red'>Arm</font>架构处理器
ARM单片机超声波监测预警系统电路设计
随着信息化、智能化、网络化的发展,嵌入式系统技术获得广阔的发展空间,工业控制领域也进行着一场巨大的变革,以32位高端处理器为平台的实时嵌入式软硬件技术将应用在工业控制的各个角落。嵌入控制器因其体积小、可靠性高、功能强、灵活方便等许多优点,其应用已深入到工业、农业、教育、国防、科研以及日常生活等各个领域,对各行各业的技术改造、产品更新换代、加速自动化化 进程、提高生产率等方面起到了极其重要的推动作用。 障碍物距离检测电路的设计 在本系统中超声波测距电路是由MICROCHIP的PIC16C57设计而成的,选用的超声波传感器是T/R40-16压电陶瓷传感器。在工作中,主控器PIC16C57发出信号使发射端的超声波换能器发出加以电压激
[电源管理]
<font color='red'>ARM</font>单片机超声波监测预警系统电路设计
ARM-Linux一移植必杀技
去年终结了ARM-wince 移植的必杀技,几个简单的要点,现在总结了linux 的关键要点如下,希望大家抛砖。把自己以前移植的wince 和linux 移植的一些简单要点都罗列了,希望大家提出更好的意见,或者指出我笔记的错误。 1.uboot传递给linux内核的nfs启动命令行: setenv bootargs mem=64M console=ttyS0,57600 root=/dev/nfs rw nfsroot=192.168.1.6:/home/linucos/ newmsg/nfsroot nfsaddrs=192.168.1.8:192.168.1.6:192.168.1.1:255.255.255.0
[单片机]
软银收购ARM一年员工总数暴涨25%
   软银 集团8月7日公布财报时指出,截至2017年6月30日为止 ARM 技术人员人数达4,269人、较去年同期增加25%。  软银 是在去年宣布以240亿英镑收购 ARM 。下面就随嵌入式小编一起来了解一下相关内容吧。    ARM 曾在今年3月表示,旗下最新开发的DynamIQ技术将可扩展人工智能(AI)的可能性。 ARM说,相较于目前的Cortex-A73系统,未来3-5年采用DynamIQ的Cortex-A其AI效能将可增加50倍。   根据 软银 在8月7日发布的投影片数据,锁定2018年高端智能手机的DynamIQ ARM Cortex-A75效能将增加50%、ARM Cortex-A55节能效率将增加2.5倍,
[嵌入式]
英特尔 vs ARM:未来的移动技术之战
    1月29日消息,高通、三星、联发科和Nvidia都是目前最大的移动芯片制造商,他们的市场份额综合占到了所有智能手机和平板电脑芯片的绝大多数。与此同时,他们还有一个共同之处,那就是旗下的CPU硬件都是基于ARM的Cortex-A系列所打造的。英特尔也许依然是PC和Windows市场的主宰,但这家公司在移动市场上的境况就要严峻得多了——只有一小部分不那么成功的Windows平板和手机使用了他们的芯片产品。 ARM是如何占领整个智能手机市场的?英特尔又能做什么才能挑战ARM的霸主地位呢?科技网站Android Authority日前就对这些问题进行了探究: 英特尔需要一场胜利 英特尔在移动市场上的位置比较靠后,这基本上是肯定的,
[手机便携]
基于ARM9与WindowsCE的车辆GPS定位信息采集系统
GPS可提供连续、高精度、实时的时间基准、三维位置、三维速度、整周模糊度等数据,具有性能好、精度高的特点,因而广泛应用于GPS载波相位测姿、精确制导、SINS/GPS组合导航、嵌入式车辆导航监控等军事与民用领域。而嵌入式系统以其低功耗、小体积、高稳定性和便携等优势,在GPS的应用中占据重要的位置。本文研究基于ARM920T内核的嵌入式微处理器S3C2440和WindowsCE 5.0(简称WindowsCE)的某型军车GPS定位信息的采集与处理。 1 系统硬/软件平台概述 车辆GPS定位信息采集系统的硬件平台结构如图l所示。 该平台可以分为3大模块: 1)微系统核心模块 由基于ARM920T的32位嵌入式微
[单片机]
基于<font color='red'>ARM</font>9与WindowsCE的车辆GPS定位信息采集系统
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved