ARM7与FPGA相结合的应用

发布者:advancement4最新更新时间:2016-10-23 来源: eefocus关键字:ARM7  FPGA 手机看文章 扫描二维码
随时随地手机看文章
  工业控制中往往需要完成多通道故障检测及多通道命令控制(这种多任务设置非常普遍),单独的CPU芯片由于其外部控制接口数量有限而难以直接完成多路检控任务,故利用ARM芯片与FPGA相结合来扩展检控通道是一个非常好的选择。这里介绍用Atmel公司ARM7处理器(AT91FR40162)和ALTERA公司的低成本FPGA芯片(cyclone2)结合使用完成多通道检控任务的一种实现方法。

  各部分功能简介

  图1为此系统的结构连接框图。如图所示,ARM芯片与FPGA芯片之间通过数据总线、地址总线及读写控制线相连,而与终端PC则通过串口通信;FPGA与目标设备通过命令控制总线和故障检测总线相连。

    ARM7与FPGA相结合的应用 - 雪之妖 - 雪之妖的博客

  

  图1 系统结构框图

  1 故障检测和命令控制部分

  故障检测:检测通道的故障(正常)信号以高(低)电平方式指示,其一旦有故障产生就会保持高电平不变直到故障排除。针对这种特征,在ARM控制器端采用定时中断循环查询方式来判断故障通道的状态。定时中断程序通过对ARM 地址总线在FPGA中进行译码而顺序锁定被检测通道的电平值,然后再经数据总线传回ARM进行判断,最后将判断结果送至远程终端。采用主机查询方式而不采用故障中断方式出于两个原因:一方面是通常控制芯片外部中断源有限(多数为4个外部中断源),对于多目标中断信号检测显然是困难的;另一方面,由于检测通道或设备受到短时干扰而产生电平随机反转,造成故障中断触发,而中断触发后又无法在通道电平恢复正常时撤销故障信号,故而形成虚假报警。

  命令控制:ARM芯片先判断主控端发来的控制命令,然后通过地址总线和数据总线将命令状态发送至经FPGA地址译码锁定的控制通道上。

  2 ARM芯片与远程检测控制终端通信

  由于只存在命令和故障状态信号的收发,所以利用ARM的串口实现与远程PC的通信,通信标准选为RS232标准。不过,在ARM芯片上要先将TTL电平通过MAX232芯片转换为RS232电平标准,对于距离超过15m的全双工通信,在发送接收两端还要各加一对RS232转RS422电平的转换模块,以增加通信距离。

  3 FPGA内部功能模块说明

  FPGA内部检测及控制电路结构关系如图2所示。

    ARM7与FPGA相结合的应用 - 雪之妖 - 雪之妖的博客

  

  图2 FPGA内部逻辑结构

  ARM芯片的ADDR2~0位地址线和片选使能信号一同进入译码器decode1进行地址译码后产生8路输出(FPGA内部可设置一个最大输出为256路的译码模块,所以在实际应用中可扩展为更多通道),低4路用于命令发送通道,高4路用于故障检测通道,读写使能信号控制数据总线。

  ARM芯片接收到发送信号编码命令时,立即在串口接收中断服务子程序中并送相应地址(通道编号)和数据(命令状态)到FPGA中。译码器有效输出作为相应通道D触发器的锁存时钟,而数据状态则被触发器锁定后作为所选通道的输出完成相应控制。

  ARM芯片在定时中断产生进入服务程序后对所有检测通道轮流查询,查询到有通道故障时,故障信号结合选中通路信号经与非运算送往数据端口被读取。

  FPGA程序设计注意问题

  1延时的配置

  通过地址总线和数据总线进行命令传输和故障检测时,FPGA是作为ARM芯片的普通外设来使用的。而ARM芯片对外设访问的速度要远低于片内存储器,所以要在ARM中设置访问的正确等待周期。ARM中提供的延时周期为0~7个,通过调试即可找到外设合适的等待周期,此系统的等待周期根据实际测试设置为5个,具体的配置方法见ARM程序说明。

  2 读写使能信号的连接

  从图2中可以看出,写使能信号NWE及读使能信号NRD应作为数据线(DATA0~5)的三态控制信号连接,即使在ARM芯片无其他外设时也不能缺省。因为ARM的上电加载程序时间要长于同一系统上FPGA的程序配置时间,而FPGA的检测及控制通道与ARM芯片的数据总线相连,FPGA加载完成后数据总线会存有相应通道的逻辑电平值(不为三态),这就会导致ARM芯片在对片内Flash芯片烧写程序或上电加载程序时与FPGA冲突(数据被逻辑锁定),造成无法正确定位操作对象而使读写失败。

  

  ARM配置及应用程序说明

  1 处理器的资源分配

  ● 存储器

  AT91FR40162内嵌一个256KB的SRAM,1024K个16位字组成的Flash存储器。SRAM通过内部32位数据总线与ARM核相连,单周期访问,Flash存储器则通过外部总线访问。

  ● 系统外围

  EBI:外部总线控制接口,EBI可寻址64MB的空间,通过8个片选线(NCS0~NCS3独立)和24位地址线访问外设,地址线高4位与片选线(NCS4~7)复用,数据总线可配置成8/16位两种模式与外设接口。

  PIO:并口控制器,PIO控制32根I/O线,多数为复用引脚,可通过编程选择为通用或专用。

  AIC:先进中断控制器,实现片内外围中断及4个外部中断源中断的管理,其外部中断引脚与通用I/O复用。

  ● 用户外围

  USART0~1:串口收发控制器,支持8个数据位的发送,可以进行异步/同步传输选择,其片外引脚与通用I/O复用。

  TC:定时/计数器,可以产生定时中断和计数功能,其片外引脚与通用I/O复用。

  2 存储器地址重映射后的空间分配

  在CPU上电后,都会从地址0开始第一条指令代码的执行,而上电复位后0地址必须映射到NCS0片选所接的器件上,这里必须将NCS0连接到片内Flash上以加载初始化程序和应用程序。由于中断和异常的入口地址是0~20H固定不变,它们的产生都是跳转到0~20H之间相应的地址取程序执行,为了加快中断响应,必须将0~20H地址映射到片内RAM区,所以在初始化的重映射命令执行(EB1_RCR的RCB位置1)后,内部RAM就映射到地址0,所有的中断入口响应和堆栈操作都被映射到在RAM区进行。

    ARM7与FPGA相结合的应用 - 雪之妖 - 雪之妖的博客

  

  由于重映射主要是用于Flash和片内RAM的地址空间交换,所以片内外围接口(EBI、USART、TC)对应的存储器编程地址范围在映射前后不发生改变,而访问外设地址为重映射后所分配。重映射后地址分配如表1所示。

  3 应用接口的存储器配置

  EBI存储器:在8个EBI片选存储器(EBI_CSR0~EBI_CSR7)中设置外设访问参数。其中,32位存储器中包括数据总线宽度8(16)设置,等待状态数目1~7个周期设置,等待使能(不是使能)设置,片选使能(不使能)设置。这里将FPGA作为外设,使能NCS3(也可根据实际选择其他空闲片选线),选择总线宽度16,使能等待周期并设周期为5(根据调试选择)。因默认NCS0为加载Flash片选线,而Flash为16位信号、7个等待周期,故需在EBI_CSR0中选择16位总线宽度、7个等待周期并使能NCS0。

  AIC存储器:AIC存储器管理所有内外部中断,对此存储器的正确初始化赋值才会打开相应中断。设定AIC工作参数:应用串口通信模式为异步模式,串口发送的数据位字符长度为8位,通信的波特率9600B/s,串口中断优先级为6(中断优先级由低到高0~7),接收发送通道使能。

  TC存储器:定时中断存储器需要设定定时长度为1s(每1s产生中断进行故障查询),定时通道使能及软件触发模式,定时中断优先级设为1。

  4 应用程序说明

  ① 主程序

  #define AT91C_BASE_EBI ((AT91PS_EBI) 0xFFE00000) //EBI基地址定义

  int main()

  {AT91F_EBI_OpenChipSelect (

  AT91C_BASE_EBI, //地址指针

  0x3, //片NCS3使能

  0x30000000+0x3f39); //片选存储器初始化

  Usart_init();//初始化串口

  timer_init();//初始化定时器

  while(1){} //循环等待

  }

  ARM处理器在完成各寄存器初始化后进入应用主程序,在主程序中首先调用EBI接口使能函数来设置参数:在程序中设置存储器基地址值(0xFFE00000),片选设置0x3(NCS3使能),NCS3的存储器初始化;调用USART控制器函数初始化串口:打开串口,串口收发通道初始化,设定串口通信速率;调用定时中断函数:打开定时中断,设置定时中断时间,设定触发方式为软件触发;最后进入等待循环。

  ② 串口命令接收中断服务程序

  #define USART0_INTERRUPT_LEVEL 6//设置中断优先级为6

  #define AT91C_US_USMODE_NORMAL AT91C_US_CHMODE_NORMAL//*设置通信模式(NORMAL定义为异步模式)*//

  AT91PS_USART COM0=AT91C_BASE_US0;//设置COM0为收发口

  char message[4];

  // 控制端串口中断通信程序 //

  //*----------------------------------------------------------------------------*//

  void Usart0_c_irq_handler(AT91PS_USART USART_pt)//串口中断处理函数

  { volatile unsigned int *conp;unsigned int status;

  int time;

  volatile unsigned int i;

  status = USART_pt->US_CSR &USART_pt->US_IMR;//给状态寄存器赋初值

  if ( status &AT91C_US_RXRDY)//接收通道寄存器判断是否有数据

  {

  AT91F_US_DisableIt(USART_pt,AT91C_US_RXRDY);//关闭接收通道准备好中断

  AT91F_US_EnableIt(USART_pt,AT91C_US_ENDRX);//打开接收结束中断

  AT91F_US_ReceiveFrame(USART_pt,(char*)(message),4);//调用接收数据数接收数据

  }

  if ( status &AT91C_US_ENDRX){

  AT91F_US_DisableIt(USART_pt,AT91C_US_ENDRX); // 关闭接收器传送结束中断

  { if((message[0]^0xff)==message[1])//判断接收代码

  {switch (message[0])

  {case 0x31 : {conp=(volatile unsigned int*)(0x1+0x30000000);//OPE1使能

  *conp=0x2;}; break;//0x31代码送往OPE1端口

  case 0x30 : {conp=(volatile unsigned int*)(0x2+0x30000000);//OPE2使能

  *conp=0x1;}; break; // 0x30代码送往OPE2端口

  case 0x11 : {conp=(volatile unsigned int*)(0x3+0x30000000);//OPE3使能

  *conp=0x2;};break;// 0x11代码则往OPE3端口

  case 0x10 : {conp=(volatile unsigned int*)(0x4+0x30000000);//OPE4使能

  *conp=0x1;};break; //0x10代码送往OPE4端口

  default:break;}

  }

  }

  以上程序为串口中断服务程序,各函数语句说明参见注释。中断级别设置为6(高于定时中断),这样使命令发送优先于故障查询(控制命令随机出现而故障查询总是循环进行);接收缓冲区message[4]数组类型必须设为动态分配,静态数据分配会使处理器开辟数据缓冲区到Flash芯片中,从而引发在一个中断处理程序中由于存取时间过长而导致串口收发超时的错误。因为篇幅有限,其他程序不再一一叙述。

  在ARM应用程序的编写中,应该尽量少的在主函数内使用循环操作,主函数主要完成各接口控制器应用初始化,因为主函数不间断循环操作不但会增加功耗,而且长时间频繁切换于中断服务和主循环之间会造成程序运行的不稳定,所以能用定时中断完成的循环操作尽量用中断完成。

  

  结语

  ARM芯片控制功能结合FPGA灵活的多硬件接口模拟特性在工程上体现出的其独特的优势,已发展为一种流行的硬件架构模式,随着芯片功能的不断强大,这种优势将使其用途更广,对任务处理变得更加灵活高效。

关键字:ARM7  FPGA 引用地址:ARM7与FPGA相结合的应用

上一篇:AVR之 ICC 与 winavr
下一篇:STM32的TIMx如何设置成普通定时器

推荐阅读最新更新时间:2024-03-16 15:17

业界首本基于FPGA的SoC设计原型方法手册面世
        鉴于SoC设计通常被创建用于ASIC的技术实现,因此这就为在一个或多个FPGA器件上进行实施提出了具体的挑战。新思科技(Synopsys)和赛灵思(Xilinx)日前宣布推出《基于FPGA的原型方法手册》一书(FPMM),希望通过将来自BBC研发、Design of System on Silicon S.A. (DS2)、Freescale、LSI、NVIDIA、ST、TI工程师团队的宝贵设计和验证专业知识汇聚成册,不仅能够帮助原型技术新手,甚至是富有经验的团队和项目领导者,对在FPGA硬件上成功实现ASIC设计原型时所面临的挑战和解决方案做出概述和总结。     Synopsys公司解决方案营销总监Davi
[嵌入式]
基于FPGA和USB2.0的高速CCD声光信号采集系统
   0 引 言   在现代通信和雷达领域中,宽带、高增益、实时并行处理是现代接收机的重要标志。因而,这种具有高速并行处理能力和特有的大带宽性能的声光处理系统具有巨大的潜在优势。以声光器件为基础的接收机除了具有宽带、高增益、实时并行处理等特点外,还具有容量大,体积小,功耗低等优点。因而,采用声光信号处理技术解决带宽、高增益和实时并行处理问题具有重要意义,声光信号的采集系统的设计是整个声光系统关键之一。这里设计了一个基于FPGA和USB 2.0的高速CCD声光信号采集系统,为声光信号采集提供了硬件平台。    1 系统概述   声光信号采集系统框图如图1所示。系统主要由CCD声光信号采集模块、A/D转换模块、FPGA驱动和控制
[嵌入式]
基于<font color='red'>FPGA</font>和USB2.0的高速CCD声光信号采集系统
AES算法的快速硬件设计与实现
  信息安全是计算机科学技术的热点研究领域,数据加密则是信息安全的重要手段。随着可编程技术的飞速发展及高速集成电路的不断出现,采用FPGA实现加密算法已受到越来越广泛的关注和重视 。与传统的软件加密方法相比,硬件加密的优点是:(1)安全性好,不易被攻击;(2)计算速度快,效率高;(3)成本低,性能可靠。加密系统中体现数据传输速度的一个重要性能指标是数据吞吐量,计算公式为:(数据长度M/时钟个数N)×时钟频率F。提高数据吞吐量是改善加密系统性能的关键,也是加密算法硬件实现技术的重要内容。      AES算法作为DES算法的替代者应用非常广泛,其硬件实现方法已有不少讨论,主要是通过提高算法频率来提高吞吐量。但是在实际运行中,为了保证
[嵌入式]
AES算法的快速硬件设计与实现
Actel推出新款低成本CorePWM组件
Actel宣布推出低成本CorePWM组件,新产品是针对数模转换所设计的PWM IP,可搭配该公司的Fusion可编程系统芯片(PSC)等FPGA产品,实现单芯片死循环控制系统的设计,取代现有的分立PWM组件、ASSP或ASIC;适用于各种嵌入式混合信号应用,包括工业、医疗设备、军用/航天、通信、消费性电子和汽车领域等。 Actel表示,CorePWM IP占用的逻辑门数很少,仅是3万个逻辑门ProASIC3的11%,或9万个逻辑门Fusion器件的4%。该IP具有一个基于缓存器的接口,可与具微控制器或不具微控制器的内核,如Actel的Core8051或CoreMP7一起使用。该组件具有8个8位PWM输出信道和一个8位预标器(p
[新品]
Xilinx:FPGA处理速度快过GPU
日经亚洲评论13日报导,NVIDIA Corporation虽凭借通用GPU(GPGPU)登上人工智能(AI)芯片一哥位置、但竞争对手早已在一旁虎视眈眈。 美国低功耗现场可程序逻辑门阵列(FPGA)制造商Xilinx表示,伙伴厂商利用FPGA芯片进行基因体定序与优化语音识别所需的深度学习、察觉FPGA的耗能低于GPU且处理速度较快。 相较于GPU只能处理运算,FPGA能以更快速的速度一次处理所有与AI相关的信息。 英特尔(Intel Corp.) 在2015年底并购美国FPGA厂商Altera。 在GPU领域落后NVIDIA、超威(AMD)的英特尔打算藉由Xeon Phi进军AI芯片市场。 NVIDIA Corporatio
[手机便携]
基于FPGA无线传感器网络MAC控制器的设计
  媒体访问控制(Medium Access Control,MAC)协议处于无线传感器网络协议的物理层和网络层之间。用于在传感器节点间公平有效地共享通信媒介。它完成载波侦听多路访问(CSMA/CA)的信道存取、协议格式成帧或解帧、自动应答、系统多周期定时和帧校验等功能。   不同传感网络的应用有着不同MAC协议,其中IEEE802.15. 4是最具代表性的协议。本文给出了用FPGA的控制逻辑来实现无线传感器网络MAC控制器的设计方法,并最终实现了符合IEEE802.15.4协议的控制器。   1 总体设计方案   无线传感器网络控制器的FPGA设计包括无线传感器网络MAC子层的FPGA设计、MAC子层与上层协议的接口设计以
[单片机]
基于<font color='red'>FPGA</font>无线传感器网络MAC控制器的设计
基于FPGA的图像增强视频处理系统
 图像增强处理有很强的针对性,没有统一的评价标准,从一般的图片、视频欣赏角度来说,滤除噪声、扩展对比度、锐化以及色彩增强等处理能显著提升视觉效果。   这里设计一个基于FPGA的实时视频图像处理系统,包含增强对比度扩展和色饱和度两种处理方法,相比于DSP和ASIC方案来说,FPGA在性能和灵活性方面具有绝对优势,应用FPGA设计视频通信系统更普遍。   1 原理和算法   图像增强处理可以在频域和空间域进行,典型的频域方法如直方图增强处理,适合于软件系统实现;而硬件系统更适合于空间域处理,因此本文所述的处理方法都将在空间域进行。   1. 1 对比度扩展   对比度扩展又称灰度变换,其目的是在拓展感兴趣的灰度区间的同时,
[嵌入式]
基于<font color='red'>FPGA</font>的图像增强视频处理系统
基于FPGA的扩频测距快速捕获仿真研究
  距离测量是测试技术中的一项基本测试技术,其几乎贯穿于工程实践的每个领域。在军事航天领域,由于其特殊的需求,对测距系统的量程、实时性和精度要求越来越高,而扩频测距由于其抗干扰能力强、精度高、作用范围广、隐蔽性好、适应性强、全天候等优势,在测距系统中得到了重视。   扩频测距也称伪码测距,它是采用一个较长周期的PN码序列作为发射信号,将它与目标反射或转发回来的PN码序列的相位进行比较,即比较两个码序列相差的码片数,从而看出其时间差,换算出发射机与目的地之间的距离。如果码片选得很窄,即码速率做得很高,那么就可以完成高精度的测距。但随着码速率的提高和码周期的加长,传统的捕获时间将达到不可容忍的地步,所以需要考虑快速捕获算法。   
[嵌入式]
基于<font color='red'>FPGA</font>的扩频测距快速捕获仿真研究
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved