STM32F4 TIM1 7路PWM信号输出

发布者:耿高良最新更新时间:2017-02-24 来源: eefocus关键字:STM32F4  TIM1  PWM  信号输出 手机看文章 扫描二维码
随时随地手机看文章

【实验目的】

输出7路占空比不同的PWM信号是各个版本ST库必备的例子。本实验的主要目的不是表现ST芯片PWM功能的强大,而是要完成输出的精确计算。

【实验内容】

输出7路PWM信号,并用示波器测量输出。

【实验原理】

1、时基单元初始化

TIM1和TIM8使用内部时钟时,时钟由APB2提供。但是定时器的时钟并不是直接由APB2提供,而是来自于输入为APB2的一个倍频器。当APB2的与分频系数为1时,这个倍频器不起作用,定时器时钟频率等于APB2时钟。当APB2预分频系数为其他时这个倍频器起作用。定时器的输入频率等于APB2的2倍。本实验中,APB2时钟被设置成了84M是对系统时钟进行2分频。因此定时器的输入时钟是84M×2 = 168M = SYSCLK。(PS:这个倍频我在ST的手册上边没有找到,是网上搜索得到的结果,与实际结果对比是正确的)

TIM_Prescaler 为预分频值,为0时分频系数为1.

TIM_Period 为每个周期计数值,从0开始计数所以其值应为计数次数减去1。

TIM_RepetitionCounter是F4新增的一个东西,只有高级定时器TIM1和TIM8有效,对应寄存器RCR。意思就是每TIM_RepetitionCounter+1个技术周期产生一次中断。

我定义的时基如下,将产生频率为20K的即使基准:

TimerPeriod = (SystemCoreClock / 20000 ) - 1;

RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
//时基初始化
TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;  //计数器方向
TIM_TimeBaseInitStructure.TIM_Prescaler = 0;   //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1;    //Period = (TIM counter clock / TIM output clock) - 1 = 20K
TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);

2、计时输出

ccr1、2、3、4为各个技术周期的TIM_Pulse。即每当计数到这些个值的时候,PWM波形就会反转。

ccr1 = TimerPeriod / 2;  //占空比1/2 = 50%
ccr2 = TimerPeriod / 3;  //占空比1/3 = 33%
ccr3 = TimerPeriod / 4;  //占空比1/4 = 25%
ccr4 = TimerPeriod / 5;  //占空比1/5 = 20%

定义输出部分:

TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
TIM_OCInitStructure.TIM_Pulse = ccr1;
TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCNPolarity_Low;//输出同相,TIM_OCNPolarity_High时输出反相
TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;

TIM_OC1Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr2;
TIM_OC2Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr3;
TIM_OC3Init(TIM1,&TIM_OCInitStructure);

TIM_OCInitStructure.TIM_Pulse = ccr4;
TIM_OC4Init(TIM1,&TIM_OCInitStructure);

TIM_Cmd(TIM1,ENABLE);
TIM_CtrlPWMOutputs(TIM1,ENABLE);

3、到这里就完成了定时器的配置,下边是GPIO引脚的配置

使用GPIOE的8、9、10、11、12、13、14引脚进行PWM输出。配置如下:

void TIM1_GPIO_Config(void)
{
  //PE 8 9 10 11 12 13 14输出
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_OUT;
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
                                | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
  GPIO_Init(GPIOE,&GPIO_InitStructure);

  GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);
}

输出波形图:

同相输出时候:

OC1/OC1N

IMAG2200

OC2/OC2N

IMAG2201

OC3/OC3/N

IMAG2202

OC4

IMAG2203

反相输出

OC1/OC1N

IMAG2204

OC2/OC2N

IMAG2205

OC3/OC3/N

IMAG2206

OC4

IMAG2207

完整的应用代码:

使用时只主要两行即可

//主函数调用

   TIM1_GPIO_Config();
   Tim1_Config();

//定时器输出引脚初始化

void TIM1_GPIO_Config(void)
{
  //PE 8 9 10 11 12 13 14输出
  GPIO_InitTypeDef GPIO_InitStructure;
  RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOE,ENABLE);
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
  GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 | GPIO_Pin_11
                                | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14;
  GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_NOPULL;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_100MHz;
  GPIO_Init(GPIOE,&GPIO_InitStructure);
  
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource8,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource9,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource10,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource11,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource12,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource13,GPIO_AF_TIM1);
  GPIO_PinAFConfig(GPIOE,GPIO_PinSource14,GPIO_AF_TIM1);
    
}

//TIM1做PWM输出
void Tim1_Config(void)
{
  TimerPeriod =  (SystemCoreClock / 20000 ) - 1;
  ccr1 = TimerPeriod / 2;  //占空比1/2 = 50%
  ccr2 = TimerPeriod / 3;  //占空比1/3 = 33%
  ccr3 = TimerPeriod / 4;  //占空比1/4 = 25%
  ccr4 = TimerPeriod / 5;  //占空比1/5 = 20%
  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1,ENABLE);
  //时基初始化
  TIM_TimeBaseInitStructure.TIM_ClockDivision = TIM_CKD_DIV1; //死区控制用。
  TIM_TimeBaseInitStructure.TIM_CounterMode = TIM_CounterMode_Up;  //计数器方向
  TIM_TimeBaseInitStructure.TIM_Prescaler = 0;   //Timer clock = sysclock /(TIM_Prescaler+1) = 168M
  TIM_TimeBaseInitStructure.TIM_RepetitionCounter = 0;
  TIM_TimeBaseInitStructure.TIM_Period = TimerPeriod - 1;    //Period = (TIM counter clock / TIM output clock) - 1 = 20K
  TIM_TimeBaseInit(TIM1,&TIM_TimeBaseInitStructure);

  
  TIM_OCInitStructure.TIM_OCMode = TIM_OCMode_PWM1;
  TIM_OCInitStructure.TIM_OutputState = TIM_OutputState_Enable;
  TIM_OCInitStructure.TIM_OutputNState = TIM_OutputNState_Enable;
  TIM_OCInitStructure.TIM_Pulse = ccr1;
  TIM_OCInitStructure.TIM_OCPolarity = TIM_OCPolarity_High;
  TIM_OCInitStructure.TIM_OCNPolarity = TIM_OCPolarity_High;
  TIM_OCInitStructure.TIM_OCIdleState = TIM_OCIdleState_Set;
  TIM_OCInitStructure.TIM_OCNIdleState = TIM_OCNIdleState_Reset;
  
  TIM_OC1Init(TIM1,&TIM_OCInitStructure);

  TIM_OCInitStructure.TIM_Pulse = ccr2;
  TIM_OC2Init(TIM1,&TIM_OCInitStructure);
  
  TIM_OCInitStructure.TIM_Pulse = ccr3;
  TIM_OC3Init(TIM1,&TIM_OCInitStructure);
  
  TIM_OCInitStructure.TIM_Pulse = ccr4;
  TIM_OC4Init(TIM1,&TIM_OCInitStructure);
  
  TIM_Cmd(TIM1,ENABLE);
  TIM_CtrlPWMOutputs(TIM1,ENABLE);
}


关键字:STM32F4  TIM1  PWM  信号输出 引用地址:STM32F4 TIM1 7路PWM信号输出

上一篇:调试STM32F4 VCP遇到的问题
下一篇:STM32F系列单片机内部FLASH编程

推荐阅读最新更新时间:2024-03-16 15:34

N5182A网络分析仪维修---网络分析仪无信号输出故障案例
一、仪器型号 是德N5182A网络分析仪 二、故障现象 客户反馈仪器无信号输出 三、检测维修 检测:首先进行开机测试,发现无法正常开机,接下来处理开机问题,经检测由于电源控制板组件损坏导致开机异常,修复后可以正常开机。继续测试发现仪器无信号输出,经检测发现仪器射频板组件损坏,造成信号无输出。 维修:更换射频板损坏组件,整机调整检测仪器。 四、出库测试 仪器修复结束后质检部进行整机测试,仪器各项指标正常。
[测试测量]
N5182A网络分析仪维修---网络分析仪无<font color='red'>信号</font><font color='red'>输出</font>故障案例
一种基于CPLD的PWM控制电路设计
摘要:介绍了利用硬件描述语言VHDL设计的一种基于CPLD的PWM控制电路,该PWM控制电路具有PWM开关频率可调,同侧2路信号互锁、延时时间可调、接口简单等特点,可应用于现代直流伺服系统。 关键词:PWM控制电路 CPLD VHDL 在直流伺服控制系统中,通过专用集成芯片或中小规模的数字集成电路构成的传统PWM控制电路往往存在电路设计复杂,体积大,抗干扰能力差以及设计困难、设计周期长等缺点因此PWM控制电路的模块化、集成化已成为发展趋势。它不仅可以使系统体积减小、重量减轻且功耗降低,同时可使系统的可靠性大大提高。随着电子技术的发展,特别是专用集成电路(ASIC)设计技术的日趋完善,数字化的电子自动化设计(EDA)工具给电子
[应用]
STM32F103 PWM配置
工作以后发现,PWM用到的地方非常多,在工控上经常需要用到不同的电压输出,对应于改变硬件电路利用软件来实现减少其工作量以达到同样的目的。 典型的呼吸灯的例子。利用PWM输出来调节电压,其实电压的波形还是方波,只是改变了其平均电压,这里的电压万用表测量的就是平均电压的数值(也是我们想得到的电压数值),示波器可以看到真实电压波形的变化。 #include pwm.h void pwm_init(void) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeDef TIM_TimeBaseInitStructure; TIM_OCInitTypeDef
[单片机]
STM8S的按键PWM调光灯历程
STM8SPWM应用 前几天有个项目用到PWM,今天整理下,弄个氛围灯;记录下,以后忘记了返回来还能看看。 思路就是在硬件端设置个按键,按下全局变量Key_num的值+1,按键一开始我用轮询法做的,后来觉得轮询法延时可能导致未知的问题,现在用中断法做;根据Key_num的值,用switch语句选择要变换的模样。 上代码: /***************************************************************************** * @function : Tim2_Init * @brief : TIM2初始化函数 CH1用作出LED——G的呼吸变化灯 *
[单片机]
采用交流电源的PWM LED调光技术的优缺点
PWM调光就是在 LED 的负载中串入一个MOS开关管,这串LED的阳极用一个恒流源供电。然后用一个PWM信号加到MOS管的栅极,以快速地开关这串LED,从而实现调光。本文我们就简单说一说PWM调光的优缺点。   1、不会产生任何色谱偏移。因为LED始终工作在满幅度电流和0之间。   2、可以有极高的调光精确度。因为脉冲波形完全可以控制到很高的精度,所以很容易实现万分之一的精度。   3、可以和数字控制技术相结合来进行控制。因为任何数字都可以很容易变换成为一个PWM信号。   4、即使在很大范围内调光,也不会发生闪烁现象。因为不会改变恒流源的工作条件(升压比或降压比),更不可能发生过热问题。   但是,PWM脉宽调光也有
[电源管理]
5050 RGB8路LED灯驱动(PWM驱动,STM32)
一、前期准备 单片机:STM32F103ZET6 开发环境:MDK5.14 库函数:标准库V3.5 RGB LED模块:淘宝有售 二、实验效果 类似奥迪转向灯,灯以此亮起,如此循环。颜色256 * 256 * 256色可调。 三、驱动原理 模块上面的RGB引脚低电平有效,LED灯IO口也是低电平有效。 四、驱动代码 led.h #ifndef __LED_H__ #define __LED_H__ #include stm32f10x.h #include gpio.h #include pwm.h #define LED_R PAout(1) #define LED_G PAout(2) #de
[单片机]
5050 RGB8路LED灯驱动(<font color='red'>PWM</font>驱动,STM32)
STM32F4系统时钟设置之二
STM32F407系统时钟配置 时钟树 方法一,采用官方库提供的配置(这里外部晶振25MHz,系统配置为168MHz) STM32F4启动与STM32F10X不同,时钟已经默认配置好 启动代码,文件:startup_stm32f4xx.s Reset handler Reset_Handler PROC EXPORT Reset_Handler IMPORT SystemInit IMPORT __main LDR R0, =SystemInit BLX R0 LDR R0, =__main
[单片机]
<font color='red'>STM32F4</font>系统时钟设置之二
浅谈PWM调制技术和PWM输出正余弦波
一、PWM PWM调制技术---------包含调节占空比以及频率。 PWM用途------在电源输出以及电机驱动方面用途广泛。 电源输出:调节不同频率或同一频率的电压输出,以及控制电流输出等等。 电机驱动----网上找了好多资料,大部分用的驱动芯片,这样的话就不需要太复杂的时序,但是有些电机可以直接用单片机进行驱动,根本用不着驱动芯片以及驱动器,提高成本,希望下面的介绍对希望直接驱动电机的有所帮助。 二、利用PWM输出相位差为任意值的波形 1、可以用普通定时器输出。这个方法我感觉有点,不做介绍。 2、用PWM寄存器输出。设PWM输出比较模式。 PWM模式包含:输出比较,PWM模式,强制输出等 PWM频率确定由PSC和ARR确
[嵌入式]
浅谈<font color='red'>PWM</font>调制技术和<font color='red'>PWM</font><font color='red'>输出</font>正余弦波
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved