基于CAN总线车载故障诊断仪设计

发布者:声慢慢最新更新时间:2017-09-04 来源: 基于CAN总线车载故障诊断仪设计关键字:故障诊断  CAN总线  射频技术 手机看文章 扫描二维码
随时随地手机看文章

本文提出了一种基于车载CAN总线故障诊断仪设计方案。本方案成本低廉,携带方便,具有很强的灵活性与适应性。


1 方案设计

系统总体设计框图如图l所示。系统分为发射端和接收端两部分。

 

由于采用射频技术,使汽车CAN总线数据采集部分和CAN总线数据诊断部分得以分离,无需连线,不受空间场地限制,安装携带方便。按照ISO有关标准, CAN总线传输速率最高可达1 Mbps;但由于汽车内部特殊环境,车载CAN总线速率一般在250 kbps。本系统中射频速率最高可达l Mbps,可以很好地满足数据传输要求。

发射端采用USB作为接收模块和PC接口。USB与RS232或PCI接口相比,具有用户使用方便,设备自动识别,自动安装驱动程序和配置,支持动态接入和动态配置等优点;其传输速率可达几十Mbps,并且支持同步和异步传输方式,保证带宽,传输失真小。

PC端应用层软件整合KWP2000的应用层协议。KWP2000是由瑞典制定的一种车载故障诊断协议,已在微机控制的自动变速器、防抱死制动系统、安全气囊、巡航系统中得到广泛应用。它基于OSI七层协议,符合IS07498标准。其中第1~6层实现通信服务的功能,第7层实现诊断服务的功能。其应用层提出了一套完整和标准化的诊断代码,本系统利用KWP2000的应用层协议,对采集到的CAN总线数据进行分析,以实现故障诊断的功能。


2 硬件实现

2.1 系统所用芯片简介

2.1.1 nRF2401芯片

nRF240l 是单片射频收发芯片,工作在2.4~2.5GHz ISM频段;内置频率合成器、功率放大器、晶体振荡器、调制器和标准SPI等功能模块;输出功率和通信频道可通过软件进行配置,共有125个频道可使用,而且最高速率可达l Mbps。芯片具有1.9~3.6 V宽工作电压,工作能耗非常低。当以一5 dBm的功率发射时,工作电流只有10.5 mA;接收时,工作电流只有18 mA。

nRF240l有4种工作模式:收发模式、配置模式、空闲模式、关机模式。其工作模式由PWR_UP、CE、CS三个引脚和配置字节最低位TX_EN来决定。

收发模式分为DirectMode和ShockBurst。前者在片内对信号不加任何处理,与其他射频收发器相同。后者使用片内FIFO堆栈,数据从 MCU低速送入,但高速发射,而且与射频协议相关的所有高速信号处理都在片内进行。例如,nRF240l在ShockBurst收发模式下自动处理字头和 CRC校验码,在接收时自动把包头和CRC校验码移去;在发送数据时自动加上字头和CRC校验码。

2.1.2 TMU3100芯片

TMU3100是台湾Tenx公司2005年推出的RISC内核的单片机。它嵌入了完全兼容USBl.1协议的USB控制器,并且提供了低速USB接口和3个端点,其中1个控制输入/输出端点和2个中断输入端点。

TMU3100可以配置为标准的HID类,可以使用Windows操作系统自带的HID类驱动程序。这样可以省去开发设备驱动程序的工作,缩短开发周期。TMU3100芯片结构框罔如图2所示。

 

2.1.3 PICl8F2682芯片

PICl8F2682是Microchip公司新推出的8位低功耗CAN微控制器,主要资源有:内置标准CAN模组、80KB闪存程序存储器、1 KB数据E2PROM、3.3 KBRAM存储器、8通道ADC、1个8位和3个16位T1MER、1个SPI和I2C串行通信端口和可编程欠压复位功能及低电压检测电路。

PIC18F2682内置增强型的CAN总线模块,该模块包含CAN协议引擎、信息缓冲和信息控制。CAN协议引擎自动处理CAN总线上所有接收和发送的消息,它可以在接收或发送信息时对数据帧进行解析。只需要首先设置适当的寄存器就可以发送信息,通过相关的寄存器即可得到信息传输的状态。

2.2 硬件电路

2.2.1 发射端电路原理

图3是系统发射端电路原理。CAN总线接口使用Microchip公司内置CAN模块的PIC18F2682单片机,并由光耦6N137进行总线隔离;CAN总线收发器采用MCP2551。

 

PIC18F2682与射频芯片nRF2401之间通过标准SPI接口SCK、SDI、SDO来完成 ,这样可以大大提高发送速率。对nRF2401配置控制使能CS和接收、发送使能CE分别由RB4和RB5进行控制。当nRF240l接收到数据包时,DRl将被置高电平,因此PICl8F2682通过查询 INT0的状态可以判断是否接收到数据。

2.2.2 接收端电路原理

图4是系统接收端电路原理。由于TMU3100由PC供电,而PC机USB接口所提供的电压VDD干扰较大,故对VDD进行了π滤波。

 

由于TMU3100没有SPI模块,故可以通过PB[1]、PB[0]按照SPI协议与nRF2401的SPI口来进行通信。对nRF2401配置控制使能CS和接收、发送使能CE分别由KSO[3]和KSO[13]控制。nRF2401接收到数据包后,DRl将被置高电平,因此TMU3100可以通过查询KSl6的状态判断足否接收到数据。


3 软件设计

系统的软件设计包括发射端软件设计、接收端软件设计和PC端软件设计。

3.1 发射端软件设计

发射端流程如图5所示。软件设计主要实现两项功能:第一是实现CAN总线上数据的采集;第二是实现将采集后的数据通过射频进行发射。

 

 

 

上电后,首先对CAN模块进行初始化。然后初始化nRF2101,并与接收端建立连接。当发送完CAN数据后没有收到ACK信号时,就跳频;然后通知发送端准备接收重发的CAN数据,直到接收到ACK信号。

为了防止空中干扰,采用了自动跳频的空中协议,即无论是否接收到ACK信号都进行跳频,因此可以防止某个频段的强干扰,进而降低误码率。

3.2 接收端软件设计

接收端软件流程如图6所示。软件设计主要实现两项功能:第一是实现枚举;第二是实现将接收到的数据通过USB上传到PC。上电后,首先完成对TMU3100 的配置,并与PC机枚举;枚举成功后就对nRF2401进行配置,并与发射端建立连接。当接收到数据包后,首先判断是CAN数据还是重传数据命令。如果是 CAN数据包,则向发射端返回ACK信号并跳频,然后将接收到的数据通过USB传至PC;如果是重传命令,则先跳频,然后置重传标志,表示下个数据包是重传的数据包。

TMU3100被配置为标准HID类,这样就不用为设备开发驱动程序,而是使用Windows提供的标准HID类驱动程序。

3.3 PC端软件设计

PC端软件由应用程序和设备驱动程序组成。Windows为标准USB没备提供了完善的内置驱动,本系统采用Windows自带的HID类驱动,只要将 TMU3100配置为HID类,即可完成与PC机的通信。这省去了开发设备的驱动程序,极大地简化了上位机软件的开发。

上位机的应用程序首要实现的功能是,要实现对TMU3100端点的读写,用VC++语言编写,可以把USB设备当成文件来操作。用CreateFiile ()函数获得USB句柄,为读访问或写访问打开指定端点。用DeviceControl()来进行控制操作,用ReadFile()从指定端点读取数据,用WriteFile()向端点写入数据。

当CAN总线上的数据被采集到PC后,就可以进行故障诊断了。故障诊断代码是依照KWP2000应用层规定的故障代码设计的,是目前国际上通用的,现将其应用于CAN的应用层,将来可以用全新的CAN上层协议取代。故障诊断代码定义在SSF14230中。SAE J1979中,由车辆制造商或系统供应者定义的服务标志符数值的不同范围,如表1所列。

此表中以十六进制数表示的服务标志符,同数据链路层中数据字节内的SID服务识别字节对应。不同的SID值代表不同的服务请求,故障诊断程序必须符合此应用层标准,才能识别不同的十六进制代码所代表的不同的故障信息。

 


4 结论

本文设计的2.4G无线车载CAN总线故障诊断仪,由于采用了自动跳频的空中协议,所以误码率几乎接近零,在14 m内仍能进行可靠的工作。系统使用国际上通用的诊断代码,使程序具有通用性和实用性;以PC作为硬件平台,无需专门开发硬件平台,可大大降低开发成本并且易于实现设备的升级和维护;使用USB接口和2.4G无线通信,具有即插即用、不受空间限制、数据传输实时性强的特点。


关键字:故障诊断  CAN总线  射频技术 引用地址:基于CAN总线车载故障诊断仪设计

上一篇:恩智浦推出全新S32K微控制器平台,加快汽车级软件设计
下一篇:Qualcomm发布突破性C-V2X车联网解决方案 支持汽车道路安全为未

推荐阅读最新更新时间:2024-03-16 15:36

SN65HVD230型CAN总线收发器的原理及应用
引言 CAN总线以其较高的通讯速率、良好的抗电磁干扰能力可实现高可靠性串行通信,因而在实际应用中具有极高的应用价值。但是,随着集成技术的不断发展,为了节省功耗,缩小电路体积,一些新型CAN总线控制器的逻辑电平均采用LVTTL,这就需要与之相适应的总线收发器。TI公司生产的SN65HVD230型电路很好地解决了这个问题。 1 SN65HVD230简介 SN65HVD230是德州仪器公司生产的3.3CAN总线收发器,主要是与带有CAN控制器的TMS320Lx240x系列DSP配套使用,该收发器具有差分收发能力,最高速率可达1Mb/s。广泛用于汽车、工业自动化、UPS控制等领域。     1.1 主要特点及引脚功能 SN6
[嵌入式]
基于CAN总线结构的并联液压混合动力车控制系统
1 引言   目前,我国城市公共交通主要依赖公交车,站间距离一般在500~1000米。公交车在每站间有数次刹车和启动,在交通流量的高峰期,刹车和启动更加频繁,带来能源浪费、尾气污染加剧、部件寿命缩短等一系列问题。   本课题研究的控制系统,可使并联液压混合动力车充分利用制动能量,在频繁刹车和启动的路况,可以明显提高车辆启动、加速和减速特性,改善车辆排放,降低油耗,延长发动机及刹车装置的寿命。而且与混合动力电动车相比,该系统在成本,技术成熟度,可靠性,维护性等方面均占有相当的优势。   并联式液压混合动力车的动力传动系中有两种或两种以上的动力源可同时或单独提供动力,有两个或两个以上相应的执行元件可同时驱动负载,该动力传动系主要
[单片机]
基于<font color='red'>CAN总线</font>结构的并联液压混合动力车控制系统
CAN总线协议及概念
现在的汽车已经不再仅仅是一种死气沉沉的交通工具了。计算机的发明,也让汽车有了一个职能的心。跟中 嵌入式 的计算机核心应用到汽车当中。那么如何规范这个核心的工作呢?这就需要CAN总线协议来帮忙了。现在让我们来了解一下这方面的知识吧。 1,CAN总线协议基本概念: (1),报文:总线上的信息以不同格式的报文发送,但长度有限。当总线开放时,任何连接的单元均可开始发送一个新报文。 (2),信息路由:在CAN系统中,一个CAN节点不使用有关系统结构的任何信息,这里包含一些重要的概念:系统灵活性——节点可以在不要求所有节点及其应用层改变任何软件或硬件的情况下,被接于CAN网络。报文 通信 ——一个报文的内容由其标示符ID命名,ID并不指
[嵌入式]
基于CAN总线的航空电缆测试系统分布机浅析
  0 引言   航空电缆是飞机的神经系统,连接着飞机电气、航电、火控、操纵等各系统,为飞机各部件提供动力电源、控制信号和数据信息。受飞机机身空间的限制,电缆系统布线一般都集中于狭小的机壁内,飞机机壁内几乎遍布导线,因此航空电缆系统要求高可靠、高集成、高轻便;由于导线种类繁多,各类电源线、高低频信号线、数据线混杂在一起,长度可达数百公里,电气环境十分复杂,从而使其潜在故障增多,许多空难事故和飞行器故障都直接或间接与电缆系统故障有关,因此,航空电缆的 健康 是飞机安全运行的重要保障,电缆安全问题尤为重要。但是国内对于航空全机电缆测试技术的研发比较欠缺,远落后于国外已处于常规应用的现状。   根据飞机全机电缆分布距离长(近百米)、点数
[单片机]
基于<font color='red'>CAN总线</font>的航空电缆测试系统分布机浅析
基于CAN总线和MSP430的CO红外检测系统设计
   1 引言   一氧化碳(CO)是剧毒性气体,人体吸人后造成人体组织和细胞缺氧,导致引起中毒窒息。在煤矿井下,CO也是引起瓦斯爆炸的主要气体之一。CO无论是对工业生产还是人类都造成巨大的损害,因此,CO检测尤为重要,特别在煤矿井下,《煤矿安全规程》规定,井下作业场所的CO浓度应控制在0.002 4%以下。因此,实时、准确地测出井下CO气体浓度,对保障煤矿工业安全生产具有重要意义。   目前检测CO的方法主要有化学法、电化学法、气相色谱法等。这些方法普遍存在价格高、普适性差等问题,且测量精度较低。这里设计一种新的检测系统,选用红外CO传感器和MSP430单片机作为核心信号处理电路,结合数字滤波、温度补偿运算.具有检测浓度范围
[工业控制]
基于CAN总线的分布式电动型AMT系统
引言 电控机械式自动变速器(AMT) ,是运用微电子技术改造传统手动变速器的典型机电一体化产品。AMT 是在干式摩擦离合器和固定轴式齿轮变速器的基础上改造的。它结构简单,保留了干式离合器与手动变速器的绝大部分总成部件,改变了其中手动操纵系统的换档部分,去掉离合器踏板,去掉加速踏板和油门之间的拉索,改为电子控制装置自动操纵 。通过电子控制单元( ECU) 控制液压、气动或电动执行机构,完成汽车起步、换档的自动操纵。 特别是对于公交车辆,大功率容量的自动变速器主要依靠进口,而且在实际运营中出现了采用自动变速器后整车油耗上升1/ 3 至1/ 2 的现象,以至于有些运营单位买得起也养不起 。与传统自动变速器相比,AMT 方案可以在原有的机械
[嵌入式]
CAN总线混合动力汽车电控系统的设计与实现
  混合动力汽车是一种由内燃机和电动机混合驱动的汽车,其主要特点是节能、环保。这种汽车在起步时用电动机驱动,消除了内燃机起步时由于燃烧不充分而排黑烟的现象。在汽车减速或刹车时,利用发电机把动能转化成电能,贮存到蓄电池中,实现能量回收达到节能的目的。由于这种汽车是内燃机和电动机两种动力并存,仅用传统的针对内燃机的电控系统无法实现两种动力的最佳配合,因此开发混合动力车的全新电控系统是十分必要的.本文以一种电机并联式混合动力汽车成功实现为背景,从系统角度介绍了混合动力汽车电控系统结构、功能及效果。 并联式混合动力驱动结构简介    并联式混合动力汽车的驱动系统结构见图1。发动机通过机械传动装置与驱动桥连接,电动机通过动力复合装置
[汽车电子]
<font color='red'>CAN总线</font>混合动力汽车电控系统的设计与实现
CAN总线在汽车车身控制中的应用
引言 20世纪80年代以来,随着集成电路和单片机在汽车上的广泛应用,汽车上的电子控制单元越来越多,例如电子燃油喷射装置、防抱死制动装置(ABS)、安全气囊装置、电控门窗装置和主动悬架等等。在这种情况下,如果仍采用常规的布线方式,即电线一端与开关相接,另一端与用电设备相通,将导致车上电线数目的急剧增加,使得电线的质量占整车质量的4%左右。另外,电控系统的增加虽然提高了轿车的动力性、经济性和舒适性,但随之增加的复杂电路也降低了汽车的可靠性,增加了维修的难度。为此,改革汽车电气技术的呼声日益高涨。因此,一种新的概念——车用控制器局域网络CAN应运而生。 CAN是控制器局域网络(Controller Area Network)的简称
[汽车电子]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved