STM32使用FSMC控制sram例程

发布者:快乐微笑最新更新时间:2017-09-19 来源: eefocus关键字:STM32  FSMC控制  sram 手机看文章 扫描二维码
随时随地手机看文章

一、基本概念

1. 与非总线复用的16位SRAM接口
FSMC配置
SRAM存储器和NOR闪存存储器共用相同的FSMC存储块,所用的协议依不同的存储器类型而有所不同。
控制SRAM存储器,FSMC应该具有下述功能:

使用或禁止地址/数据总线的复用功能。

选择所用的存储器类型:NOR闪存、SRAM或PSRAM。

定义外部存储器的数据总线宽度:8或16位。

使用或关闭扩展模式:扩展模式用于访问那些具有不同读写操作时序的存储器。
正如配置NOR闪存存储器一样,用户必须按照SRAM存储器的数据手册给出的时序数据,计算和设置下列参数:

ADDSET:地址建立时间

ADDHOLD:地址保持时间

DATAST:数据建立时间

 

 

二、例程

1. FSMC_SRAM.C

 

/******************** (C) COPYRIGHT 2008 STMicroelectronics ********************
* File Name          : fsmc_sram.c
* Author             : MCD Application Team
* Version            : V2.0.1
* Date               : 06/13/2008
* Description        : This file provides a set of functions needed to drive the 
*                      IS61WV51216BLL SRAM memory mounted on STM3210E-EVAL board.
********************************************************************************
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/

/* Includes ------------------------------------------------------------------*/
#include "fsmc_sram.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define Bank1_SRAM3_ADDR    ((u32)0x68000000)

#define SRAM_WRITE(Address, Data)  (*(vu16 *)(Address) = (Data))

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/

/*******************************************************************************
* Function Name  : FSMC_SRAM_Init
* Description    : Configures the FSMC and GPIOs to interface with the SRAM memory.
*                  This function must be called before any write/read operation
*                  on the SRAM.
* Input          : None 
* Output         : None
* Return         : None
*******************************************************************************/
void FSMC_SRAM_Init(void)
{
  FSMC_NORSRAMInitTypeDef  FSMC_NORSRAMInitStructure;
  FSMC_NORSRAMTimingInitTypeDef  p;
  GPIO_InitTypeDef GPIO_InitStructure; 
  
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOD | RCC_APB2Periph_GPIOG | RCC_APB2Periph_GPIOE |
                         RCC_APB2Periph_GPIOF, ENABLE);
  
/*-- GPIO Configuration ------------------------------------------------------*/
  /* SRAM Data lines configuration */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_8 | GPIO_Pin_9 |
                                GPIO_Pin_10 | GPIO_Pin_14 | GPIO_Pin_15;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOD, &GPIO_InitStructure); 
  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_7 | GPIO_Pin_8 | GPIO_Pin_9 | GPIO_Pin_10 |
                                GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13 | GPIO_Pin_14 |
                                GPIO_Pin_15;
  GPIO_Init(GPIOE, &GPIO_InitStructure);
  
  /* SRAM Address lines configuration */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
                                GPIO_Pin_4 | GPIO_Pin_5 | GPIO_Pin_12 | GPIO_Pin_13 |
                                GPIO_Pin_14 | GPIO_Pin_15;
  GPIO_Init(GPIOF, &GPIO_InitStructure);
  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1 | GPIO_Pin_2 | GPIO_Pin_3 |
                                GPIO_Pin_4 | GPIO_Pin_5;
  GPIO_Init(GPIOG, &GPIO_InitStructure);
  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_11 | GPIO_Pin_12 | GPIO_Pin_13; 
  GPIO_Init(GPIOD, &GPIO_InitStructure);
   
  /* NOE and NWE configuration */  
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_4 |GPIO_Pin_5;
  GPIO_Init(GPIOD, &GPIO_InitStructure);
  
  /* NE3 configuration */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10; 
  GPIO_Init(GPIOG, &GPIO_InitStructure);
  
  /* NBL0, NBL1 configuration */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0 | GPIO_Pin_1; 
  GPIO_Init(GPIOE, &GPIO_InitStructure); 
  
/*-- FSMC Configuration ------------------------------------------------------*/
  p.FSMC_AddressSetupTime = 0;
  p.FSMC_AddressHoldTime = 0;
  p.FSMC_DataSetupTime = 2;
  p.FSMC_BusTurnAroundDuration = 0;
  p.FSMC_CLKDivision = 0;
  p.FSMC_DataLatency = 0;
  p.FSMC_AccessMode = FSMC_AccessMode_A;

  FSMC_NORSRAMInitStructure.FSMC_Bank = FSMC_Bank1_NORSRAM3;
  FSMC_NORSRAMInitStructure.FSMC_DataAddressMux = FSMC_DataAddressMux_Disable;
  FSMC_NORSRAMInitStructure.FSMC_MemoryType = FSMC_MemoryType_SRAM;
  FSMC_NORSRAMInitStructure.FSMC_MemoryDataWidth = FSMC_MemoryDataWidth_16b;
  FSMC_NORSRAMInitStructure.FSMC_BurstAccessMode = FSMC_BurstAccessMode_Disable;
  FSMC_NORSRAMInitStructure.FSMC_WaitSignalPolarity = FSMC_WaitSignalPolarity_Low;
  FSMC_NORSRAMInitStructure.FSMC_WrapMode = FSMC_WrapMode_Disable;
  FSMC_NORSRAMInitStructure.FSMC_WaitSignalActive = FSMC_WaitSignalActive_BeforeWaitState;
  FSMC_NORSRAMInitStructure.FSMC_WriteOperation = FSMC_WriteOperation_Enable;
  FSMC_NORSRAMInitStructure.FSMC_WaitSignal = FSMC_WaitSignal_Disable;
  FSMC_NORSRAMInitStructure.FSMC_ExtendedMode = FSMC_ExtendedMode_Disable;
  FSMC_NORSRAMInitStructure.FSMC_AsyncWait = FSMC_AsyncWait_Disable;
  FSMC_NORSRAMInitStructure.FSMC_WriteBurst = FSMC_WriteBurst_Disable;
  FSMC_NORSRAMInitStructure.FSMC_ReadWriteTimingStruct = &p;
  FSMC_NORSRAMInitStructure.FSMC_WriteTimingStruct = &p;

  FSMC_NORSRAMInit(&FSMC_NORSRAMInitStructure);

  /* Enable FSMC Bank1_SRAM Bank */
  FSMC_NORSRAMCmd(FSMC_Bank1_NORSRAM3, ENABLE);  
}

/*******************************************************************************
* Function Name  : FSMC_SRAM_WriteBuffer
* Description    : Writes a Half-word buffer to the FSMC SRAM memory. 
* Input          : - pBuffer : pointer to buffer. 
*                  - WriteAddr : SRAM memory internal address from which the data
*                    will be written.
*                  - NumHalfwordToWrite : number of half-words to write. 
*                    
* Output         : None
* Return         : None
*******************************************************************************/
void FSMC_SRAM_WriteBuffer(u16* pBuffer, u32 WriteAddr, u32 NumHalfwordToWrite)
{
  for(; NumHalfwordToWrite != 0; NumHalfwordToWrite--) /* while there is data to write */
  {
    /* Transfer data to the memory */
    *(u16 *) (Bank1_SRAM3_ADDR + WriteAddr) = *pBuffer++;
    
    /* Increment the address*/  
    WriteAddr += 2;
  }   
}

/*******************************************************************************
* Function Name  : FSMC_SRAM_ReadBuffer
* Description    : Reads a block of data from the FSMC SRAM memory.
* Input          : - pBuffer : pointer to the buffer that receives the data read 
*                    from the SRAM memory.
*                  - ReadAddr : SRAM memory internal address to read from.
*                  - NumHalfwordToRead : number of half-words to read.
* Output         : None
* Return         : None
*******************************************************************************/
void FSMC_SRAM_ReadBuffer(u16* pBuffer, u32 ReadAddr, u32 NumHalfwordToRead)
{
  for(; NumHalfwordToRead != 0; NumHalfwordToRead--) /* while there is data to read */
  {
    /* Read a half-word from the memory */
    *pBuffer++ = *(vu16*) (Bank1_SRAM3_ADDR + ReadAddr);

    /* Increment the address*/  
    ReadAddr += 2;
  }  
}

/******************* (C) COPYRIGHT 2008 STMicroelectronics *****END OF FILE****/

 

/***************************************************************
* Function Name  : FSMC_SRAM_WriteHalfWord
* Description    : Writes a half-word to the SRAM memory. 
* Input          : - WriteAddr : SRAM memory internal address to write to.
*                  - Data : Data to write. 
* Output         : None
* Return         : 
*******************************************************************************/
void FSMC_SRAM_WriteHalfWord(u32 WriteAddr, u16 Data)
{
  //NOR_WRITE(ADDR_SHIFT(0x05555), 0x00AA);
 // NOR_WRITE(ADDR_SHIFT(0x02AAA), 0x0055);
 // NOR_WRITE(ADDR_SHIFT(0x05555), 0x00A0);
  SRAM_WRITE((Bank1_SRAM3_ADDR + WriteAddr), Data);

  //return (FSMC_NOR_GetStatus(Program_Timeout));
}

/******************************************************************************
* Function Name  : FSMC_SRAM_ReadHalfWord
* Description    : Reads a half-word from the SRAM memory. 
* Input          : - ReadAddr : NOR memory internal address to read from.
* Output         : None
* Return         : Half-word read from the SRAM memory
*******************************************************************************/
u16 FSMC_SRAM_ReadHalfWord(u32 ReadAddr)
{
  //NOR_WRITE(ADDR_SHIFT(0x005555), 0x00AA); 
  //NOR_WRITE(ADDR_SHIFT(0x002AAA), 0x0055);  
  //NOR_WRITE((Bank1_NOR2_ADDR + ReadAddr), 0x00F0 );

  return (*(vu16 *)((Bank1_SRAM3_ADDR + ReadAddr)));
}
 

 

2.MAIN.C

 

/******************** (C) COPYRIGHT 2008 STMicroelectronics ********************
* File Name          : main.c
* Author             : MCD Application Team
* Version            : V2.0.1
* Date               : 06/13/2008
* Description        : Main program body
********************************************************************************
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE TIME.
* AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY DIRECT,
* INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING FROM THE
* CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE CODING
* INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*******************************************************************************/
/* Includes ------------------------------------------------------------------*/
#include "fsmc_sram.h"

/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
#define BUFFER_SIZE        0x400
#define WRITE_READ_ADDR    0x8000

/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
GPIO_InitTypeDef GPIO_InitStructure;
ErrorStatus HSEStartUpStatus;

u16 TxBuffer[BUFFER_SIZE];
u16 RxBuffer[BUFFER_SIZE];
u32 WriteReadStatus = 0, Index = 0;

/* Private function prototypes -----------------------------------------------*/
void RCC_Configuration(void);
void NVIC_Configuration(void);
void Fill_Buffer(u16 *pBuffer, u16 BufferLenght, u32 Offset);

/* Private functions ---------------------------------------------------------*/
/*******************************************************************************
* Function Name  : main
* Description    : Main program.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
int main(void)
{
#ifdef DEBUG
  debug();
#endif

  /* System Clocks Configuration */
  RCC_Configuration();  

  /* NVIC Configuration */
  NVIC_Configuration();

  /* PF.06 and PF.07 config to drive LD1 and LD2 ******************************/
  /* Enable GPIOF clock */
  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOF, ENABLE);
  
  /* Configure PF.06 and PF.07 as Output push-pull */
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6 | GPIO_Pin_7;
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
  GPIO_Init(GPIOF, &GPIO_InitStructure);
  
  /* Write/read to/from FSMC SRAM memory  *************************************/
  /* Enable the FSMC Clock */
  RCC_AHBPeriphClockCmd(RCC_AHBPeriph_FSMC, ENABLE);
  
  /* Configure FSMC Bank1 NOR/SRAM3 */
  FSMC_SRAM_Init();

  /* Write data to FSMC SRAM memory */
  /* Fill the buffer to send */
  Fill_Buffer(TxBuffer, BUFFER_SIZE, 0x3212);
  FSMC_SRAM_WriteBuffer(TxBuffer, WRITE_READ_ADDR, BUFFER_SIZE);


  /* Read data from FSMC SRAM memory */
  FSMC_SRAM_ReadBuffer(RxBuffer, WRITE_READ_ADDR, BUFFER_SIZE); 

  /* Read back SRAM memory and check content correctness */   
  for (Index = 0x00; (Index < BUFFER_SIZE) && (WriteReadStatus == 0); Index++)
  {
    if (RxBuffer[Index] != TxBuffer[Index])
    {
      WriteReadStatus = Index + 1;
    }
  } 

  if (WriteReadStatus == 0)
  { /* OK */
    /* Turn on LD1 */
    GPIO_SetBits(GPIOF, GPIO_Pin_6);
  }
  else
  { /* KO */
    /* Turn off LD2 */
    GPIO_SetBits(GPIOF, GPIO_Pin_7);     
  }

  while (1)
  {
  }
}

/*******************************************************************************
* Function Name  : RCC_Configuration
* Description    : Configures the different system clocks.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void RCC_Configuration(void)
{   
  /* RCC system reset(for debug purpose) */
  RCC_DeInit();

  /* Enable HSE */
  RCC_HSEConfig(RCC_HSE_ON);

  /* Wait till HSE is ready */
  HSEStartUpStatus = RCC_WaitForHSEStartUp();

  if(HSEStartUpStatus == SUCCESS)
  {
    /* Enable Prefetch Buffer */
    FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);

    /* Flash 2 wait state */
    FLASH_SetLatency(FLASH_Latency_2);
  
    /* HCLK = SYSCLK */
    RCC_HCLKConfig(RCC_SYSCLK_Div1); 
  
    /* PCLK2 = HCLK */
    RCC_PCLK2Config(RCC_HCLK_Div1);

    /* PCLK1 = HCLK/2 */
    RCC_PCLK1Config(RCC_HCLK_Div2);

    /* PLLCLK = 8MHz * 9 = 72 MHz */
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);

    /* Enable PLL */ 
    RCC_PLLCmd(ENABLE);

    /* Wait till PLL is ready */
    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
    {
    }

    /* Select PLL as system clock source */
    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);

    /* Wait till PLL is used as system clock source */
    while(RCC_GetSYSCLKSource() != 0x08)
    {
    }
  }
}

/*******************************************************************************
* Function Name  : NVIC_Configuration
* Description    : Configures Vector Table base location.
* Input          : None
* Output         : None
* Return         : None
*******************************************************************************/
void NVIC_Configuration(void)
{
#ifdef  VECT_TAB_RAM  
  /* Set the Vector Table base location at 0x20000000 */ 
  NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); 
#else  /* VECT_TAB_FLASH  */
  /* Set the Vector Table base location at 0x08000000 */ 
  NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);   
#endif
}

/*******************************************************************************
* Function name : Fill_Buffer
* Description   : Fill the global buffer
* Input         : - pBuffer: pointer on the Buffer to fill
*                 - BufferSize: size of the buffer to fill
*                 - Offset: first value to fill on the Buffer
* Output param  : None
*******************************************************************************/
void Fill_Buffer(u16 *pBuffer, u16 BufferLenght, u32 Offset)
{
  u16 IndexTmp = 0;

  /* Put in global buffer same values */
  for (IndexTmp = 0; IndexTmp < BufferLenght; IndexTmp++ )
  {
    pBuffer[IndexTmp] = IndexTmp + Offset;
  }
}

#ifdef  DEBUG
/*******************************************************************************
* Function Name  : assert_failed
* Description    : Reports the name of the source file and the source line number
*                  where the assert_param error has occurred.
* Input          : - file: pointer to the source file name
*                  - line: assert_param error line source number
* Output         : None
* Return         : None
*******************************************************************************/
void assert_failed(u8* file, u32 line)

  /* User can add his own implementation to report the file name and line number,
     ex: printf("Wrong parameters value: file %s on line %d/r/n", file, line) */

  /* Infinite loop */
  while (1)
  {
  }
}
#endif


关键字:STM32  FSMC控制  sram 引用地址:STM32使用FSMC控制sram例程

上一篇:STM32使用FSMC控制NAND flash 例程
下一篇:STM32使用fsmc控制NOR flash 例程

推荐阅读最新更新时间:2024-03-16 15:37

STM32中SysTick在3.5固件库中的应用(1)
一、SysTick STM32内核中有一个系统定时器,它是一个24位递减计数器。工作原理是系统时基定时器设定初值并使能后,每经过1个系统时钟周期,计数值就减,当计数值减到0时,系统定时器会重新自动重装初值,并继续下一次计数,同时内部的COUNTFLAG标志位会置位。触发中断。 在很早的固件库中,提供了很多函数,来对SysTick进行设置,但是到了3.5版本的标准固件库中,移除了相关驱动函数,用户必须调用CMSIS 定义的函数,其中CMSIS只提供了一个Systick设置的函数,替代了STM32原来有的所有的驱动函数,这样做的目的,可能是简化Systick 的设置,可是降低了用户对SysTick的可控性。 在CMSIS中提供的函数是
[单片机]
使用STM32按键控制LED亮灭
实验环境 Matlab版本 :2021b 操作系统 :Win10专业版 硬件平台 :YF-STM32-ALPHA 1R4 模型与原理图 本次实验所用到的Simulink模型如图5.1所示,实验现象: 按键按下、松开LED循环实现翻转亮灭效果,当按键按下时,产生下降沿脉冲,通过一个计数器对下降沿脉冲进行0~1循环计数,计数到最大值时产生输出信号,输出信号为0时,控制LED熄灭,输出值为1时,控制LED点亮。 按键电路采用对电源负极方式连接,按键松开状态为高电平H,即逻辑1,按键按下状态为低电平L,即逻辑0。 图5.1 按键控制LED亮灭simulink模型 图5.2 按键控制LED亮灭原理图 图5.3 按键在开发板
[单片机]
使用<font color='red'>STM32</font>按键<font color='red'>控制</font>LED亮灭
STM32实现IAP功能的学习笔记
最近因项目需求要实现STM32的在线升级即IAP功能,先将这几天的学习体会和IAP的具体实现总结出来,分享给大家,希望对同样实现IAP的童鞋有所帮助,文中最后会上传名为STM32_Update.zip的压缩文件里面包含了STM32_App、STM32_MyBoot_V1.0和升级软件STM32_UpdateSoftware的源码文件供大家参考。所有程序都经过测试,可以直接在原子哥的 开发板 上跑,上位机的升级软件大家可以直接打开 STM32_Update\STM32_UpdateSoftware\Release\STM32_UpdateSoftware.exe来升级,如果需要查看源码请用VS2010打开工程文件。 最终要实现的是:
[单片机]
<font color='red'>STM32</font>实现IAP功能的学习笔记
基于STM32的智能学习空调项目的定时器捕获驱动
/************************************************************************************************************************* * 函数 : TIM3.C * 功能 : 红外信号捕获和发射 * 参数 : 无 * 返回 : 无 * 依赖 : 底层读写函数 *************************************************************************************************************************/ voidIRDA
[单片机]
【STM32CubeMX】11,STM32之CAN回环测试,过滤器的匹配设置
1,因为自己目前只有一块板子有CAN模块,所以先做CAN的回环测试。 主要参考http://www.stm32cube.com/question/33 下面的代码测试可以使用 1-1,在CAN的编程中,主要是注意四大结构体,这几个都是自动生成的, 1、CAN_HandleTypeDef hcan1;// CAN handle Structure definition首先定义CAN的处理结构体,hcan1内部包括了 3、CanTxMsgTypeDef; 4、CanRxMsgTypeDef;的头地址 2、CAN_FilterConfTypeDef sFilterConfig;// CAN filter conf
[单片机]
【STM32CubeMX】11,<font color='red'>STM32</font>之CAN回环测试,过滤器的匹配设置
STM32】搭建基于Eclipse平台的STM32调试环境
以NuttX工程为例,硬件平台STM32F103C8。 1 导入工程 File- Import 选择Existing Code as Makefie Project,点击next 输入工程名字(nuttx)以及工程路径(/home/boots/nuttx) 2 配置MCU调试环境 应用市场下载MCU插件: Help- Eclipse Marketplace :输入mcu并搜索,点击Install进行安装 点击甲壳虫旁边倒三角,点击Debug Configurations...进行Debug 参数配置 双击GDB SEGGER J-LINK Debugging(若成功安装MCU插件,就会出现该选项),新建nuttx
[单片机]
【<font color='red'>STM32</font>】搭建基于Eclipse平台的<font color='red'>STM32</font>调试环境
STM32电机方波】记录2——NVIC中断基本设置
NVIC概念:提供中断控制器,用于总体管理异常,称之为“内嵌向量中断控制器”。简单来说,就是MCU提供、处理内部中断的模块。 NVIC库函数: 中断优先级: 在配置NVIC之前得弄懂一个概念:中断优先级,即中断的执行顺序。中断优先级中,分为抢占式优先级(先占优先级)和响应优先级(从优先级)。抢断优先级,顾名思义,能再别人中断是抢占别人中断,实现中断嵌套。响应优先级则只能排队,不能抢在前面插别人的对,即不能嵌被嵌套。 STM32中指定优先级的寄存器为4位,其定义如下: 第0组:所有4位用于指定响应优先级 NVIC_PriorityGroup_0 = 选择第0组 第1组:最高1位用于指定抢占式优先级,最低3位用于指定响应优先级
[单片机]
【<font color='red'>STM32</font>电机方波】记录2——NVIC中断基本设置
stm32之DMA彻底研究
在做实验之前,首先必须明白什么是DMA,DMA的作用又体现在哪里。 DMA,即直接内存存储,在一些数据的传输中,采用DMA方式,从而将CPU解放出来。 让CPU有足够的时间处理其他的事情。 stm32使用DMA的相关操作: 1、DMA的配置 要配置的有DMA传输通道选择,传输的成员和方向、普通模式还是循环模式等等。 void DMA_Configuration(void) { DMA_InitTypeDef DMA_InitStructure; //DMA设置: //设置DMA源:内存地址&串口数据寄存器地址 //方向:内存-- 外设 //每次传输位:8bit //传输大小DMA_BufferSize=SEN
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved