AVR定时/计数器在使用PWM功能设计要点与应用实例

发布者:CuriousTraveler最新更新时间:2017-12-12 来源: eefocus关键字:AVR  定时  计数器  PWM功能 手机看文章 扫描二维码
随时随地手机看文章

一、定时/计数器PWM设计要点

根据PWM的特点,在使用ATmega128的定时/计数器设计输出PWM时应注意以下几点:

1.首先应根据实际的情况,确定需要输出的PWM频率范围,这个频率肟刂频亩韵笥泄亍H缡涑鯬WM波用于控制灯的亮度,由于人眼不能分辨42Hz以上的频率,所以PWM的频率应高于42Hz,否则人眼会察觉到灯的闪烁。

2.然后根据需要PWM的频率范围确定ATmega128定时/计数器的PWM工作方式。AVR定时/计数器的PWM模式可以分成快速PWM和频率(相位)调整PWM两大类。

3.快速PWM可以的到比较高频率的PWM输出,但占空比的调节精度稍微差一些。此时计数器仅工作在单程正向计数方式,计数器的上限值决定PWM的频率,而比较匹配寄存器的值决定了占空比的大小。PWM频率的计算公式为:

PWM频率 = 系统时钟频率/(分频系数*(1+计数器上限值))

4.快速PWM模式适合要求输出PWM频率较高,但频率固定,占空比调节精度要求不高的应用。

5.频率(相位)调整PWM模式的占空比调节精度高,但输出频率比较低,因为此时计数器仅工作在双向计数方式。同样计数器的上限值决定了PWM的频率?冉掀ヅ浼拇嫫鞯闹稻龆?苏伎毡鹊拇笮 ?WM频率的计算公式为:

PWM频率 = 系统时钟频率/(分频系数*2*计数器上限值))

6.相位调整PWM模式适合要求输出PWM频率较低,但频率固定,占空比调节精度要求高的应用。当调整占空比时,PWM的相位也相应的跟着变化(Phase Correct)。

7.频率和相位调整PWM模式适合要求输出PWM频率较低,输出频率需要变化,占空比调节精度要求高的应用。此时应注意:不仅调整占空比时,PWM的相位会相应的跟着变化;而一但改变计数器上限值,即改变PWM的输出频率时,会使PWM的占空比和相位都相应的跟着变化(Phase and Frequency Correct)。

8.在PWM方式中,计数器的上限值有固定的0xFF(8位T/C);0xFF、0x1FF、0x3FF(16位T/C)。或由用户设定的0x0000-0xFFFF,设定值在16位T/C的ICP或OCRA寄存器中。而比较匹配寄存器的值与计数器上限值之比即为占空比。

二、 PWM应用设计参考

  下面给出一个设计示例,在示例中使用PWM方式来产生一个1KHz左右的正弦波,幅度为0-VCC/2。

  首先按照下面的公式建立一个正弦波样本表,样本表将一个正弦波周期分为128个点,每点按7位量化(127对应最高幅值Vcc/2):

f(x) = 64 + 63 * sin(2πx/180) x∈[0…127]

   如果在一个正弦波周期中采用128个样点,那么对应1KHz的正弦波PWM的频率为128KHz。实际上,按照采样频率至少为信号频率的2倍的取样定理来计算,PWM的频率的理论值为2KHz即可。考虑尽量提高PWM的输出精度,实际设计使用PWM的频率为16KHz,即一个正弦波周期(1KHz)中输出16个正弦波样本值。这意味着在128点的正弦波样本表中,每隔8点取出一点作为PWM的输出。

  程序中使用ATmega128的8位T/C0,工作模式为相位调整PWM模式输出,系统时钟为8MHz,分频系数为1,其可以产生最高PWM频率为: 8000000Hz / 510 = 15686Hz。每16次输出构成一个周期正弦波,正弦波的频率为980.4Hz。PWM由OC0(PB4)引脚输出。参考程序如下(ICCAVR)。

//ICC-AVR application builder : 2004-08
// Target : M128
// Crystal: 8.0000Mhz

#include
#include

#pragma data:code
// 128点正弦波样本表
const unsigned char auc_SinParam[128] = {
64,67,70,73,76,79,82,85,88,91,94,96,99,102,104,106,109,111,113,115,117,118,120,121,
123,124,125,126,126,127,127,127,127,127,127,127,126,126,125,124,123,121,120,118,
117,115,113,111,109,106,104,102,99,96,94,91,88,85,82,79,76,73,70,67,64,60,57,54,51,48,
45,42,39,36,33,31,28,25,23,21,18,16,14,12,10,9,7,6,4,3,2,1,1,0,0,0,0,0,0,0,1,1,2,3,4,6,
7,9,10,12,14,16,18,21,23,25,28,31,33,36,39,42,45,48,51,54,57,60};
#pragma data:data

unsigned char x_SW = 8,X_LUT = 0;

#pragma interrupt_handler timer0_ovf_isr:17
void timer0_ovf_isr(void)
{
X_LUT += x_SW; // 新样点指针
if (X_LUT > 127) X_LUT -= 128; // 样点指针调整
OCR0 = auc_SinParam[X_LUT]; // 取样点指针到比较匹配寄存器
}

void main(void)
{
DDRB |= 0x10; // PB4(OC0)输出
TCCR0 = 0x71; // 相位调整PWM模式,分频系数=1,正向控制OC0
TIMSK = 0x01; // T/C0溢出中断允许
SEI(); // 使能全局中断
while(1)
{……};
}



  每次计数器溢出中断的服务中取出一个正弦波的样点值到比较匹配寄存器中,用于调整下一个PWM的脉冲宽度,这样在PB4引脚上输出了按正弦波调制的PWM方波。当PB4的输出通过一个低通滤波器后,便得到一个980.4Hz的正弦波了。如要得到更精确的1KHz的正弦波,可使用定时/计数器T/C1,选择工作模式10,设置ICR1=250为计数器的上限值。

  在ATMEL公司网站上,给出了使用一个定时/计数器实现双音频拨号的应用设计参考(AVR314.pdf),读者可以从中学习到如何更好设计和使用PWM的功能。

关键字:AVR  定时  计数器  PWM功能 引用地址:AVR定时/计数器在使用PWM功能设计要点与应用实例

上一篇:基于AVR单片机PWM功能的数控恒流源电路设计与产品研制
下一篇:在AVR汇编程序里加入EPROM数据的方法与应用实例

推荐阅读最新更新时间:2024-03-16 15:49

AT89S51单片机计数器的设计
1.实验任务 利用AT89S51单片机的P1.0-P1.3接四个发光二极管L1-L4,用来指示当前计数的数据;用P1.4-P1.7作为预置数据的输入端,接四个拨动开关K1-K4,用P3.6/WR和P3.7/RD端口接两个轻触开关,用来作加计数和减计数开关。具体的电路原理图如下图所示 2.电路原理图 图4.12.1 3.系统板上硬件连线 (1).把“单片机系统”区域中的P1.0-P1.3端口用8芯排线连接到“八路发光二极管指示模块”区域中的L1-L4上;要求:P1.0对应着L1,P1.1对应着L2,P1.2对应着L3,P1.3对应着L4; (2).把“单片机系统”区域中的P3.0/RXD,P3.1/TXD,P3.2/IN
[单片机]
AT89S51单片机<font color='red'>计数器</font>的设计
AVR片内两个串口互相通信的单片机源码
学习单片机串口程序时,我们经常会写一个串口自发自收程序,来测试硬件以及我们编写的程序; 自发自收很简单,只需要将串口的RXD与TXD两个IO短接就行; 而我们的XMEGA片上的串口非常丰富; 我将串口C0的TXD与串口E0的RXD用杜邦线链接起来,如果E0正确收到了C0发来的数据,便在虚拟串口输出相关信息虽然串口通信是一个简单而古老的通信协议,而且串口与PC直接通信越来越多地被USB代替, 但是,大量的应用仍然直接或间接地通过串口通信来完成,因此它的重要性是不言而喻的 相关图片与代码如下 ------
[单片机]
<font color='red'>AVR</font>片内两个串口互相通信的单片机源码
STM32——如何配置通用定时器中断
STM32的定时器 STM32F103ZET6一共有8个定时器,其中分别为: 高级定时器(TIM1、TIM8);通用定时器(TIM2、TIM3、TIM4、TIM5);基本定时器(TIM6、TIM7)。 除非APB1的分频系数是1,否则通用定时器的时钟等于APB1时钟的2倍。 默认调用SystemInit函数情况下: SYSCLK=72M AHB时钟=72M APB1时钟=36M 所以APB1的分频系数=AHB/APB1时钟=2 所以,通用定时器时钟CK_INT=2*36M=72M 定时器中断的一般步骤 实例要求:通过TIM3的中断来控制led1的亮灭 硬件:LED——GPIOB,GPIO_Pin_5 1、使能
[单片机]
STM32——如何配置通用<font color='red'>定时</font>器中断
一种基于avr的多任务机制
首先要获得函数的pc地址,并通过获得的函数地址,轻松切换函数数。其目的是减少坠余的代码。比如说对按键扫描的扫描,以达到精简函数代码,提高函数执行效率。 其主要的思想就是利用中断返回的时候改变函数的返回地址,来实现的, 当然用指针也可以过得函数地址 ,以下是用iccavr仿真编译软件和hex文件反汇编软件以及proteus仿真实验,单片机位atmega16调试的内容。 首先,我们用C语言编译以一段函数,自定义4个不同的函数,举例:3个发光二极管发光来指示。 如: #include iom16v.h #include macros.h unsigned int sp_ZHI=0,SP_init=0; void LED_1(voi
[单片机]
一种基于<font color='red'>avr</font>的多任务机制
单片机入门学习十三 STM32单片机学习十 通用定时
本篇重点记录的是STM32F1的通用定时器。 STM32F103ZE有8个定时器,其中2个高级定时器(TIM1、TIM8),4个通用定时器(TIM2、TIM3、TIM4、TIM5),2个基本定时器(TIM6、TIM7)。下表是对这8个定时器的详细描述。 定时器种类 位数 计数器模式 产生DMA请求 捕获/比较通道 互补输出 特殊应用场景 高级定时器 (TIM1,TIM8) 16 向上、向下、向上/下 可以 4 有 带死区控制盒紧急刹车, 可应用于PWM电机控制 通用定时器 (TIM2~TIM5) 16 向上、向下、向上/下 可以 4 无 通用。定时计数,PWM输出, 输入捕获,输出比较 基本定时器 (TIM6,TIM7) 1
[单片机]
单片机入门学习十三 STM32单片机学习十 通用<font color='red'>定时</font>器
简单锁定看门狗定时器设计
摘要:在看门狗集成电路(MAX6749)的基础上,该电路提供了响应的输入脉冲流损失锁存故障指示。该电路可以监控风扇(上风扇的转速输出计算),振荡电路,或一个微处理器软件执行。   大多数看门狗定时器IC产生一个单一的,有限的输出脉冲持续时间当看门狗超时。这适用于触发复位或中断微处理器,但有些应用需要输出(故障指示灯)的锁存器。一个简单的电路(图1)提供了响应的输入脉冲流损失锁存故障指示。在μP-supervisor/watchdog集成电路(MAX6749)的基础上,该电路用于监测风扇(在风扇的转速输出计算),振荡电路,或一个合适的微处理器软件执行。   图1。该电路产生响应的输入脉冲损失锁存故障指示。   在上电期间
[工业控制]
简单锁定看门狗<font color='red'>定时</font>器设计
AVR开发 Arduino方法(二) 中断子系统
在了解中断子系统之前,首先要了解中断的概念。你正在看书,这时电话响了,你会怎么做呢?相信大多数人会这样:先标记看到的位置,接完电话回来后继续阅读。这就是一个现实生活中中断的例子,我们把“电话响了”成为中断源。Arduino UNO R3的主处理器ATMega328P拥有26个中断源,如下表所示: 向量号 程序地址 中断源 中断定义 中断服务程序名称 1 0x0000 RESET 外部电平复位,上电复位,掉电检测复位,看门狗复位 2 0x0002 INT0 外部中断请求0 INT0_vect 3 0x0004 INT1 外部中断请求1 INT1_vect 4 0x0006 P
[单片机]
多任务系统看门狗的实现
看门狗分硬件看门狗和软件看门狗。硬件看门狗是利用一个定时器电路,其定时输出连接到电路的复位端,程序在一定时间范围内对定时器清零(俗称“喂狗”),因此程序正常工作时,定时器总不能溢出,也就不能产生复位信号。如果程序出现故障,不在定时周期内复位看门狗,就使得看门狗定时器溢出产生复位信号并重启系统。软件看门狗原理上一样,只是将硬件电路上的定时器用处理器的内部定时器代替,这样可以简化硬件电路设计,但在可靠性方面不如硬件定时器,比如系统内部定时器自身发生故障就无法检测到。当然也有通过双定时器相互监视,这不仅加大系统开销,也不能解决全部问题,比如中断系统故障导致定时器中断失效。 看门狗本身不是用来解决系统出现的问题,在调试过程中发现的故障应该
[应用]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多每日新闻
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved