ARM9的系统时钟和串口(非流控 + 非FIFO + 查询方式)

发布者:SereneSoul55最新更新时间:2018-04-15 来源: eefocus关键字:ARM9  系统时钟  串口 手机看文章 扫描二维码
随时随地手机看文章

实验的目的:
设置系统时钟,并在串口上输入一个字符,单板接收后将它的ASCII值加1后,从串口输出。

实验的源程序:
/*************************************************************************
s3c24xx.h
*************************************************************************/
/* WOTCH DOG register */
#define     WTCON           (*(volatile unsigned long *)0x53000000)


/* SDRAM regisers */
#define     MEM_CTL_BASE    0x48000000
#define     SDRAM_BASE      0x30000000


/* NAND Flash registers */
#define NFCONF              (*(volatile unsigned int  *)0x4e000000)
#define NFCMD               (*(volatile unsigned char *)0x4e000004)
#define NFADDR              (*(volatile unsigned char *)0x4e000008)
#define NFDATA              (*(volatile unsigned char *)0x4e00000c)
#define NFSTAT              (*(volatile unsigned char *)0x4e000010)


/*GPIO registers*/
#define GPBCON              (*(volatile unsigned long *)0x56000010)
#define GPBDAT              (*(volatile unsigned long *)0x56000014)


#define GPFCON              (*(volatile unsigned long *)0x56000050)
#define GPFDAT              (*(volatile unsigned long *)0x56000054)
#define GPFUP               (*(volatile unsigned long *)0x56000058)


#define GPGCON              (*(volatile unsigned long *)0x56000060)
#define GPGDAT              (*(volatile unsigned long *)0x56000064)
#define GPGUP               (*(volatile unsigned long *)0x56000068)


#define GPHCON              (*(volatile unsigned long *)0x56000070)
#define GPHDAT              (*(volatile unsigned long *)0x56000074)
#define GPHUP               (*(volatile unsigned long *)0x56000078)


/*UART registers*/
#define ULCON0              (*(volatile unsigned long *)0x50000000)
#define UCON0               (*(volatile unsigned long *)0x50000004)
#define UFCON0              (*(volatile unsigned long *)0x50000008)
#define UMCON0              (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0            (*(volatile unsigned long *)0x50000010)
#define UTXH0               (*(volatile unsigned char *)0x50000020)
#define URXH0               (*(volatile unsigned char *)0x50000024)
#define UBRDIV0             (*(volatile unsigned long *)0x50000028)


/*interrupt registes*/
#define SRCPND              (*(volatile unsigned long *)0x4A000000)
#define INTMOD              (*(volatile unsigned long *)0x4A000004)
#define INTMSK              (*(volatile unsigned long *)0x4A000008)
#define PRIORITY            (*(volatile unsigned long *)0x4A00000c)
#define INTPND              (*(volatile unsigned long *)0x4A000010)
#define INTOFFSET           (*(volatile unsigned long *)0x4A000014)
#define SUBSRCPND           (*(volatile unsigned long *)0x4A000018)
#define INTSUBMSK           (*(volatile unsigned long *)0x4A00001c)


/*external interrupt registers*/
#define EINTMASK            (*(volatile unsigned long *)0x560000a4)
#define EINTPEND            (*(volatile unsigned long *)0x560000a8)


/*clock registers*/
#define LOCKTIME (*(volatile unsigned long *)0x4c000000)
#define MPLLCON (*(volatile unsigned long *)0x4c000004)
#define UPLLCON (*(volatile unsigned long *)0x4c000008)
#define CLKCON (*(volatile unsigned long *)0x4c00000c)
#define CLKSLOW (*(volatile unsigned long *)0x4c000010)
#define CLKDIVN (*(volatile unsigned long *)0x4c000014)


/*PWM & Timer registers*/
#define TCFG0 (*(volatile unsigned long *)0x51000000)
#define TCFG1 (*(volatile unsigned long *)0x51000004)
#define TCON (*(volatile unsigned long *)0x51000008)
#define TCNTB0 (*(volatile unsigned long *)0x5100000c)
#define TCMPB0 (*(volatile unsigned long *)0x51000010)
#define TCNTO0 (*(volatile unsigned long *)0x51000014)


#define GSTATUS1    (*(volatile unsigned long *)0x560000B0)



/********************************************************************************
serial.c
********************************************************************************/

#include "s3c24xx.h"
#include "serial.h"


#define TXD0READY   (1<<2)
#define RXD0READY   (1)


#define PCLK            50000000    // init.c中的clock_init函数设置PCLK为50MHz
#define UART_CLK        PCLK        //  UART0的时钟源设为PCLK
#define UART_BAUD_RATE  115200      // 波特率
#define UART_BRD        ((UART_CLK  / (UART_BAUD_RATE * 16)) - 1)


/*
 * 初始化UART0
 * 115200,8N1,无流控
 */
void uart0_init(void)
{
    GPHCON  |= 0xa0;    // GPH2,GPH3用作TXD0,RXD0
    GPHUP   = 0x0c;     // GPH2,GPH3内部上拉


    ULCON0  = 0x03;     // 8N1(8个数据位,无较验,1个停止位)
    UCON0   = 0x05;     // 查询方式,UART时钟源为PCLK
    UFCON0  = 0x00;     // 不使用FIFO
    UMCON0  = 0x00;     // 不使用流控
    UBRDIV0 = UART_BRD; // 波特率为115200
}


/*
 * 发送一个字符
 */
void putc(unsigned char c)
{
    /* 等待,直到发送缓冲区中的数据已经全部发送出去 */
    while (!(UTRSTAT0 & TXD0READY));
    
    /* 向UTXH0寄存器中写入数据,UART即自动将它发送出去 */
    UTXH0 = c;
}


/*
 * 接收字符
 */
unsigned char getc(void)
{
    /* 等待,直到接收缓冲区中的有数据 */
    while (!(UTRSTAT0 & RXD0READY));
    
    /* 直接读取URXH0寄存器,即可获得接收到的数据 */
    return URXH0;
}


/*
 * 判断一个字符是否数字
 */
int isDigit(unsigned char c)
{
    if (c >= '0' && c <= '9')
        return 1;
    else
        return 0;       
}


/*
 * 判断一个字符是否英文字母
 */
int isLetter(unsigned char c)
{
    if (c >= 'a' && c <= 'z')
        return 1;
    else if (c >= 'A' && c <= 'Z')
        return 1;       
    else
        return 0;
}

/************************************************************************************
serial.h
************************************************************************************/
void uart0_init(void);
void putc(unsigned char c);
unsigned char getc(void);
int isDigit(unsigned char c);
int isLetter(unsigned char c);

/***********************************************************************************
init.c
***********************************************************************************/
/*
 * init.c: 进行一些初始化
 */ 


#include "s3c24xx.h"
 
void disable_watch_dog(void);
void clock_init(void);
void memsetup(void);
void copy_steppingstone_to_sdram(void);


/*
 * 关闭WATCHDOG,否则CPU会不断重启
 */
void disable_watch_dog(void)
{
    WTCON = 0;  // 关闭WATCHDOG很简单,往这个寄存器写0即可
}


#define S3C2410_MPLL_200MHZ     ((0x5c<<12)|(0x04<<4)|(0x00))
#define S3C2440_MPLL_200MHZ     ((0x5c<<12)|(0x01<<4)|(0x02))
/*
 * 对于MPLLCON寄存器,[19:12]为MDIV,[9:4]为PDIV,[1:0]为SDIV
 * 有如下计算公式:
 *  S3C2410: MPLL(FCLK) = (m * Fin)/(p * 2^s)
 *  S3C2440: MPLL(FCLK) = (2 * m * Fin)/(p * 2^s)
 *  其中: m = MDIV + 8, p = PDIV + 2, s = SDIV
 * 对于本开发板,Fin = 12MHz
 * 设置CLKDIVN,令分频比为:FCLK:HCLK:PCLK=1:2:4,
 * FCLK=200MHz,HCLK=100MHz,PCLK=50MHz
 */
void clock_init(void)
{
    // LOCKTIME = 0x00ffffff;   // 使用默认值即可
    CLKDIVN  = 0x03;            // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1


    /* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */
__asm__(
    "mrc    p15, 0, r1, c1, c0, 0\n"        /* 读出控制寄存器 */ 
    "orr    r1, r1, #0xc0000000\n"          /* 设置为“asynchronous bus mode” */
    "mcr    p15, 0, r1, c1, c0, 0\n"        /* 写入控制寄存器 */
    );


    /* 判断是S3C2410还是S3C2440 */
    if ((GSTATUS1 == 0x32410000) || (GSTATUS1 == 0x32410002))
    {
        MPLLCON = S3C2410_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
    }
    else
    {
        MPLLCON = S3C2440_MPLL_200MHZ;  /* 现在,FCLK=200MHz,HCLK=100MHz,PCLK=50MHz */
    }       
}


/*
 * 设置存储控制器以使用SDRAM
 */
void memsetup(void)
{
    volatile unsigned long *p = (volatile unsigned long *)MEM_CTL_BASE;


    /* 这个函数之所以这样赋值,而不是像前面的实验(比如mmu实验)那样将配置值
     * 写在数组中,是因为要生成”位置无关的代码”,使得这个函数可以在被复制到
     * SDRAM之前就可以在steppingstone中运行
     */
    /* 存储控制器13个寄存器的值 */
    p[0] = 0x22011110;     //BWSCON
    p[1] = 0x00000700;     //BANKCON0
    p[2] = 0x00000700;     //BANKCON1
    p[3] = 0x00000700;     //BANKCON2
    p[4] = 0x00000700;     //BANKCON3  
    p[5] = 0x00000700;     //BANKCON4
    p[6] = 0x00000700;     //BANKCON5
    p[7] = 0x00018005;     //BANKCON6
    p[8] = 0x00018005;     //BANKCON7
    
                                            /* REFRESH,
                                             * HCLK=12MHz:  0x008C07A3,
                                             * HCLK=100MHz: 0x008C04F4
                                             */ 
    p[9]  = 0x008C04F4;
    p[10] = 0x000000B1;     //BANKSIZE
    p[11] = 0x00000030;     //MRSRB6
    p[12] = 0x00000030;     //MRSRB7
}


void copy_steppingstone_to_sdram(void)
{
    unsigned int *pdwSrc  = (unsigned int *)0;
    unsigned int *pdwDest = (unsigned int *)0x30000000;
    
    while (pdwSrc < (unsigned int *)4096)
    {
        *pdwDest = *pdwSrc;
        pdwDest++;
        pdwSrc++;
    }
}

/**********************************************************************************
head.S
**********************************************************************************/
@******************************************************************************
@ File:head.S
@ 功能:设置SDRAM,将程序复制到SDRAM,然后跳到SDRAM继续执行
@******************************************************************************       
   
.extern     main
.text 
.global _start 
_start:
Reset:                  
    ldr sp, =4096           @ 设置栈指针,以下都是C函数,调用前需要设好栈
    bl  disable_watch_dog   @ 关闭WATCHDOG,否则CPU会不断重启
    // bl是位置无关码,相当于:PCnew = PC + 偏移
    //                         PCnew = (4+8) + 0x28 = 0x34
    
    //ldr pc, =disable_watch_dog  /* 这样写将出错 */
    
    bl  clock_init          @ 设置MPLL,改变FCLK、HCLK、PCLK
    bl  memsetup            @ 设置存储控制器以使用SDRAM
    bl  copy_steppingstone_to_sdram     @ 复制代码到SDRAM中
    ldr pc, =on_sdram                   @ 跳到SDRAM中继续执行
on_sdram:
    ldr sp, =0x34000000     @ 设置栈指针
    ldr lr, =halt_loop      @ 设置返回地址
    ldr pc, =main           @ 调用main函数
halt_loop:
    b   halt_loop

/**************************************************************************
main.c
**************************************************************************/
#include "serial.h"


int main()
{
    unsigned char c;
    uart0_init();   // 波特率115200,8N1(8个数据位,无校验位,1个停止位)


putc('T');
putc('e');
putc('s');
putc('t');
putc(':');
putc('\n');
putc('\r');


    while(1)
    {
        // 从串口接收数据后,判断其是否数字或字母,若是则加1后输出
        c = getc();
        if (isDigit(c) || isLetter(c))
            putc(c+1);
    }


    return 0;
}

/***********************************************************************
uart.lds
************************************************************************/
SECTIONS {
    . = 0x30000000;
    .text          :   { *(.text) }
    .rodata ALIGN(4) : {*(.rodata)} 
    .data ALIGN(4) : { *(.data) }
    .bss ALIGN(4)  : { *(.bss)  *(COMMON) }
}


/********************************************************************************
Makefile
********************************************************************************/
objs := head.o init.o serial.o main.o


uart.bin: $(objs)
arm-linux-ld -Tuart.lds -o uart_elf $^
arm-linux-objcopy -O binary -S uart_elf $@
arm-linux-objdump -D -m arm uart_elf > uart.dis

%.o:%.c
arm-linux-gcc -Wall -O2 -c -o $@ $<


%.o:%.S
arm-linux-gcc -Wall -O2 -c -o $@ $<


clean:
rm -f uart.bin uart_elf uart.dis *.o 


实验的问题总结:
I.关于系统时钟的设置,我们主要看clock_init()函数。
1>
/* 如果HDIVN非0,CPU的总线模式应该从“fast bus mode”变为“asynchronous bus mode” */
__asm__(                                          //C语言内嵌汇编,这段话是根据s3c2440用户手册上的说明来写的
    "mrc    p15, 0, r1, c1, c0, 0\n"        /* 读出控制寄存器 */ 
    "orr    r1, r1, #0xc0000000\n"          /* 设置为“asynchronous bus mode” */
    "mcr    p15, 0, r1, c1, c0, 0\n"        /* 写入控制寄存器 */
    );

2>
GSTATUS1寄存器为芯片序列信号,可查看s3c2440用户手册

3>
MPLLCON的目的是设置FCLK和Fin的倍数,关于其值的设置,可以参考s3c2440用户手册关于PLL值选择表

II.关于UART,我们主要分析如下:
我们主要分析serial.c文件,我们主要使用的方式是:非流控 + 非FIFO + 查询方式。
在uart0_init()函数中,关于这几个寄存器的配置,你可以对照s3c2440手册进行一一配置即可
其中,UTRSTAT0寄存器是判断发送缓冲器或接收缓冲器中是否有数据
UTXH0为发送缓冲寄存器,我们若想发送数据,直接往UTXH0寄存器里边赋值即可。

URXH0为接收缓冲寄存器,我们若想读数据,直接往URXH0寄存器里边读数据即可。


关键字:ARM9  系统时钟  串口 引用地址:ARM9的系统时钟和串口(非流控 + 非FIFO + 查询方式)

上一篇:ARM9的IIC
下一篇:ARM9的中断体系结构

推荐阅读最新更新时间:2024-03-16 15:59

STM32串口中断使用
简介:STM32串口中断使用:配置串口时钟在void Rcc_Configuration(void)函数中实现,配置串口管脚在void UsartGPIO_Configuration(void)中实现;初始化参数设置串口中断配置。 以提高CPU的利用率。在程序中处理流程如下: 一:串口初始化 1.配置串口时钟 在void Rcc_Configuration(void)函数中实现 1.void Rcc_Configuration(void) 1.{ 2. RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | RCC_APB2Periph_AFIO,ENABLE); 3.
[单片机]
stm32 串口的printf函数重定向
串口的printf函数重定向分为2种情况:使用MicroLIB库与不使用MicroLIB库,具体实现代码见下: #if 1 /*****************不使用MicroLIB库需加上该部分****************************/ // 取消ARM的半主机工作模式 //#pragma import(__use_no_semihosting) // 确保没有从C库链接使用半主机的函数 // //struct __FILE // 标准库需要的支持函数 //{ // int handle; //}; //FILE __stdout; // FILE is typ
[单片机]
linux串口终端驱动——s3c6410平台(四)
接着上一篇的tty线路规程,这一篇主要说明tty最主要的数据结构tty_driver 1、tty_driver 我认为tty_driver结构体是tty终端设备的根本,他连接了设备和驱动,而且,特定tty设备驱动的主体工作就是填充tty_driver结构体中的成员,实现其中的成员函数,tty_driver结构体如下: struct tty_driver { int magic; /* magic number for this structure */ 表示给这个结构体的“幻数”,设为TTY_DRIVER_MAGIC,在alloc_tty_driver()函数中被初始化。 struct kref kref; /*
[单片机]
s5pv210----串口设置之输入输出字符
第一节 S5PV210 UART相关说明 通用异步收发器简称UART,即UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER,它用来传输串行数据。发送数据时,CPU 将并行数据写入UART,UART按照一定的格式在一根电线上串行发出;接收数据时,UART检测另一根电线的信号,将串行收集在缓冲区中,CPU 即可读取UART获得这些数据。 在S5PV210 中,UART提供了4 对独立的异步串口I/O 端口,有 4 个独立的通道,每个通道可以工作于DMA 模式或者中断模式。其中,通道0 有256byte 的的发送FIFO和256byte 的接收FIFO,通道1 有64byte的的发送FIF
[单片机]
s5pv210----<font color='red'>串口</font>设置之输入输出字符
STM32时钟系统时钟启动顺序详解
概念基础: STM32时钟系统基本一致,不同系列之间有细微差别。此文档主要针对STM32F446的时钟系统进行介绍。 1. 时钟树概述 为何不是采用一个系统时钟?如51 因为STM32本身非常复杂,外设非常多,但是并非所有外设都需要系统时钟这么高的频率,比如看门狗和RTC只需要几十K的时钟即可。同一个电路,时钟越快,功耗越大,同时抗电磁干扰能力也会越弱,所以对于较为复杂的MCU一般采用多时钟源的方法来解决这些问题。 主要时钟源: 5个最主要的时钟源: 高速时钟源:HSI、HSE、PLL 低速时钟源:LSI、LSE 其中PLL实际又分为3个时钟源:主PLL、I2S部分专用PLLI2S、SAI部分专用PLLASI。 详解: L
[单片机]
STM32<font color='red'>时钟</font><font color='red'>系统</font>与<font color='red'>时钟</font>启动顺序详解
STC12C5A60S2串口二通信ESP8266-01S模块控制LED闪烁
物联网,ESP8266-01S,解决了STC12C5A60S2串口二功能通信问题控制LED灯闪烁 /*-------------------------------- * 2020年4月19日 //晶振12M * */ #include STC12C5A60S2.H #include UART2.h sbit LED = P3^6; unsigned char temps ={ AT+CIPMUX=1rn }; unsigned char code displaytable ={ AT+CIPSERVER=1,8080rn }; unsigned char dat =0; void delay(void) { cha
[单片机]
基于MSP430F149的串口服务器设计
  摘 要: MSP430微处理器具有功耗低和功能模块丰富的特点。采用MSP430F149为主控制器和以太网控制芯片CS8900A设计串口服务器,并且嵌入精简后的TCP/IP协议。以过程控制设备为目标进行调试,实现RS-232串口和网络接口RJ45的转换。使串口设备联入以太网,实现远程网络控制。   本文采用了TI公司生产的16位超低功耗的混合信号处理器(mixed signal processor)和Cirrus公司生产的高集成度的全面支持IEEE802.3标准的以太网控制器CS8900A来设计嵌入式串口服务器终端,以模块化设计思想提供软件设计,鉴于嵌入式系统有限的内存,对TCP/IP进行了精简,并进行了调试。   1
[单片机]
基于MSP430F149的<font color='red'>串口</font>服务器设计
基于单片机C8051F021和时钟芯片实现定时采集存储系统的设计
随着科技的高速发展,现代工业测控领域的很多应用中都需要实现大量数据的定时采集存储。以为海流计设计的海流数据采集存储接口电路为例,介绍一种定时采集存储系统的工作原理及其实现方法。 1 总体结构 在很多情况下,尤其是恶劣的工作环境下,高性能的单片机和大容量的Flash存储器是数据采集存储系统的最佳选择,本文介绍的系统也是基于这样的考虑。系统硬件结构并不复杂,包括高性能单片机C8051F021、实时时钟芯片SD2300、大容量Flash存储器K9G8G08及其外围电路,如图1所示。工作原理也较为简单,通过串口将单片机C8051F021与海流计相连,通过对单片机的编程实现对海流计的控制和使用。同时,为了实现定时采集和数据存储的功能,还
[单片机]
基于单片机C8051F021和<font color='red'>时钟</font>芯片实现定时采集存储<font color='red'>系统</font>的设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved