STM32 HAL库学习系列第8篇---回调函数总结

发布者:Howard_Sun最新更新时间:2018-06-18 来源: eefocus关键字:STM32  HAL库  回调函数 手机看文章 扫描二维码
随时随地手机看文章

普通函数与回调函数的区别:就是ST将中断封装,给使用者的API,就是标准库的中断函数

对普通函数的调用:

调用程序发出对普通函数的调用后,程序执行立即转向被调用函数执行,直到被调用函数执行完毕后,再返回调用程序继续执行。从发出调用的程序的角度看,这个过程为“调用-->等待被调用函数执行完毕-->继续执行”

对回调函数调用:

调用程序发出对回调函数的调用后,不等函数执行完毕,立即返回并继续执行。这样,调用程序执和被调用函数同时在执行。当被调函数执行完毕后,被调函数会反过来调用某个事先指定函数,以通知调用程序:函数调用结束。这个过程称为回调(Callback),这正是回调函数名称的由来。


位置:stm32f4xx_hal_xxx.c 中

定义为虚函数

__weak void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)


串口回调:stm32f4xx_hal_uart.c 

voidHAL_UART_IRQHandler(UART_HandleTypeDef*huart);

voidHAL_UART_TxCpltCallback(UART_HandleTypeDef*huart);    //发送回调

voidHAL_UART_TxHalfCpltCallback(UART_HandleTypeDef*huart);

voidHAL_UART_RxCpltCallback(UART_HandleTypeDef*huart);    //接收回调

voidHAL_UART_RxHalfCpltCallback(UART_HandleTypeDef*huart);

voidHAL_UART_ErrorCallback(UART_HandleTypeDef*huart);

voidHAL_UART_AbortCpltCallback(UART_HandleTypeDef*huart);

voidHAL_UART_AbortTransmitCpltCallback(UART_HandleTypeDef*huart);

voidHAL_UART_AbortReceiveCpltCallback(UART_HandleTypeDef*huart);

举例:

我使用的stm32的两路串口收发,两个串口接收中断处理有问题,我现在的处理方式是这样的

/* USER CODE BEGIN 4 */

voidHAL_UART_RxCpltCallback(UART_HandleTypeDef*huart)

       {

               if(huart==&huart2)

               {

                                uRX_buf[RX_cont++]=RX_buf;

//                HAL_UART_Transmit_DMA(&huart2, uTX_buf, 8);

                               if(RX_cont>63)

                               {

                                        RX_cont=0;

                               }

                }

                else if(huart==&huart4)

               {

                                uRX_buf[RX_cont++]=RX_buf4;

                               if(RX_cont>63)

                               {

                                        RX_cont=0;

                               }

//                        HAL_UART_Receive_IT(&huart4,&RX_buf4,1);//¡ä??¨²?¨®¨º¨¹?D??

               }


定时器回调:stm32f4xx_hal_tim.c 

voidHAL_TIM_PeriodElapsedCallback(TIM_HandleTypeDef*htim);  //周期运行回调,配置定时进入中断

voidHAL_TIM_OC_DelayElapsedCallback(TIM_HandleTypeDef*htim);//输出比较回调

voidHAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef*htim);  

voidHAL_TIM_PWM_PulseFinishedCallback(TIM_HandleTypeDef*htim);

voidHAL_TIM_TriggerCallback(TIM_HandleTypeDef*htim);

voidHAL_TIM_ErrorCallback(TIM_HandleTypeDef*htim);


GPIO:

GPIO_PinState HAL_GPIO_ReadPin(GPIO_TypeDef*GPIOx,uint16_t GPIO_Pin);//读引脚状态

voidHAL_GPIO_WritePin(GPIO_TypeDef*GPIOx,uint16_t GPIO_Pin,GPIO_PinState PinState);  //写状态

voidHAL_GPIO_TogglePin(GPIO_TypeDef*GPIOx,uint16_t GPIO_Pin);  //翻转电平

HAL_StatusTypeDef HAL_GPIO_LockPin(GPIO_TypeDef*GPIOx,uint16_t GPIO_Pin); //锁存引脚状态

voidHAL_GPIO_EXTI_IRQHandler(uint16_t GPIO_Pin);   //实际调用的是下边的中断回调函数

voidHAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin);     //引脚触发之后的回调函数,按键中断函数

举例; cube配置时开启中断触发模式

/* USER CODE BEGIN 4 */ 

voidHAL_GPIO_EXTI_Callback(uint16_t GPIO_Pin) 

 /* NOTE: This function Should not be modified, when the callback is needed,

           the HAL_GPIO_EXTI_Callback could be implemented in the user file

   */ 

   switch(GPIO_Pin) 

   { 

       caseGPIO_PIN_12:LED0_Toggle();break; 

       caseGPIO_PIN_13:LED1_Toggle();break; 

       caseGPIO_PIN_14:LED2_Toggle();break; 

       caseGPIO_PIN_15:LED3_Toggle();break; 

       default:break; 

   } 

/* USER CODE END 4 */ 


关键字:STM32  HAL库  回调函数 引用地址:STM32 HAL库学习系列第8篇---回调函数总结

上一篇:STM32 HAL库学习系列番外第2篇---LL库定时器配置
下一篇:[HAL库学习之路]7.定时器中断

推荐阅读最新更新时间:2024-03-16 16:05

STM32入门学习笔记之低功耗实验
13.1 STM32低功耗模式概述 STM32在系统或电源复位后,芯片处于运行状态,此时HCLK为CPU提供时钟,内核执行程序代码,当CPU不需要继续运行时,可以采用低功耗模块来降低芯片的运行电流,STM32有3种低功耗模式: (1)睡眠模式:内核停止,外设继续运行 (2)待机模式:1.8V的内核电源被关闭,SRAM内容丢失,PLL,HIS,HSE振荡器断电,此模式下最低电流2uA (3)停机模式:停止所有时钟,此模式下最低电流20uA 上述三种模式的配置与唤醒条件如下表所示。 模式 进入操作 唤醒 睡眠 WFI指令 任一中断 WFE指令 唤醒事件 待机 PDDS位+SLEEPDEEP位+WFI或者WFE WKUP
[单片机]
STM32 内存分配详解
1、KEIL 编译后数据 code RO-data RW-data ZI-data flash 实际存储数据 2、内存段 bss 段、data段、text段、堆(heap)和栈(stack)。 2.1、bss 段 bss 段(bss segment)通常是指用来存放程序中未初始化的全局变量的一块内存区域; bss 是英文Block Started by Symbol的简称; bss 段属于静态内存分配。 2.2、data 段 数据段(data segment)通常是指用来存放程序中已初始化的全局变量的一块内存区域; 数据段属于静态内存分配。 2.3、text 段 代码段(code s
[单片机]
<font color='red'>STM32</font> 内存分配详解
STM32 定时器输出比较翻转模式
STM32的定时器还有一个模式叫做输出比较翻转模式。这种模式,顾名思义,可以翻转电平,但是条件是:当计数值达到比较值时,才会在对应的通道引脚翻转原先的电平。利用这个特点,我们可以在引脚上生成PWM波。 下面就讲讲如何利用这个 翻转 这个特点,来输出PWM波。还是基于我自己的规工程。 1、工程的修改 1)这里用到了定时器,所以需要将stm32f10x_tim.h添加到STM32F10x_StdPeriod_Driver工程组中。 2)打开stm32f0x_conf.h文件,将其中原先被屏蔽的语句:#include stm32f10x_tim.h 的注释去掉。 3)新建OCToggle.c与OCToggle.h两个文件,分别保存
[单片机]
<font color='red'>STM32</font> 定时器输出比较翻转模式
stm32 高级定时器1配置注意
void TIM1_Int_Init(u16 arr,u16 psc) { TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure; NVIC_InitTypeDef NVIC_InitStructure; RCC_APB2PeriphClockCmd(RCC_APB2Periph_TIM1, ENABLE); //①时钟 TIM1 使能 //定时器 TIM1 初始化 TIM_TimeBaseStructure.TIM_Period = arr; //设置自动重装载寄存器周期的值 TIM_TimeBaseStructure.TIM_Prescaler =psc; //设置时钟频率除数的预分频值
[单片机]
<font color='red'>stm32</font> 高级定时器1配置注意
stm32笔记:RCC时钟实验
C代码 //STM32F103RBT6,包含的启动代码是 STM32F10x.s #include mytype.h //GPIOA8是 LED0 #define GPIOA_CRL (*(vu32*)(0x40000000+0x10000+0x0800+0x00)) //volatile unsigned long #define GPIOA_CRH (*(vu32*)(0x40000000+0x10000+0x0800+0x04)) #define GPIOA_IDR (*(vu32*)(0x40000000+0x10000+0x0800+0x08)) #define GPIOA
[单片机]
<font color='red'>stm32</font>笔记:RCC时钟实验
STM32菜鸟成长记录---系统滴答定时器(systick)应用
1.systick介绍 Systick就是一个定时器而已,只是它放在了NVIC中,主要的目的是为了给操作系统提供一个硬件上的中断(号称滴答中断)。滴答中断?这里来简单地解释一下。操作系统进行运转的时候,也会有“心跳”。它会根据“心跳”的节拍来工作,把整个时间段分成很多小小的时间片,每个任务每次只能运行一个“时间片”的时间长度就得退出给别的任务运行,这样可以确保任何一个任务都不会霸占整个系统不放。或者把每个定时器周期的某个时间范围赐予特定的任务等,还有操作系统提供的各种定时功能,都与这个滴答定时器有关。因此,需要一个定时器来产生周期性的中断,而且最好还让用户程序不能随意访问它的寄存器,以维持操作系统“心跳”的节律。只要不把它在S
[单片机]
<font color='red'>STM32</font>菜鸟成长记录---系统滴答定时器(systick)应用
关于STM32浮点运算单元FPU的应用示例
有人利用STM32芯片做些DSP处理,在启用FPU单元进行调试、验证过程中可能会遇到些小问题、小困惑,这里通过STM32F4芯片一个具体的应用示例简单分享下,希望顺便能给同仁提供些帮助或提醒。 我这里通过调用DSP库里的FFT相关函数实现1024点的FFT运算,样点数据及运算结果均为浮点数。 上图中A区代码是做样点数据准备,B区代码完成FFT运算。我们来一起看看基本的配置以及不启用硬件浮点单元和启用硬件浮点单元执行B区代码的时间上的差别。 程序里要调用一些数学函数,而这些数学函数往往集成在相应的数学函数库里。我们选用ARM公司的DSP数学库,该库系专门针对AMR核芯片及指令系统而组织的代码,相比IDE自带的通用数学函数库会
[单片机]
关于<font color='red'>STM32</font>浮点运算单元FPU的应用示例
如何使用STM32实现systick的精确延时
SYSTICK寄存器初始化 void SysTick_Configuration(void) { if (SysTick_Config(SystemCoreClock / 100)) { while (1); } NVIC_SetPriority(SysTick_IRQn, 0x0); } SysTick_Config默认时钟为SysTick_CLKSource_HCLK,所以在这之前使用SysTick_CLKSourceConfig()选择系统时钟不会改变systick的时钟 static __INLINE uint32_t SysTick_Config(uint32_t ticks) { if (ticks 》 Sys
[单片机]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved