单片机对SD卡读写系列(二)

发布者:MindfulBeing最新更新时间:2016-01-15 来源: eefocus关键字:单片机  SD卡  读写系列 手机看文章 扫描二维码
随时随地手机看文章
写命令的例程:

 

 
  1. //-----------------------------------------------------------------------------------------------  
  2.   向SD卡中写入命令,并返回回应的第二个字节   
  3. //-----------------------------------------------------------------------------------------------  
  4. unsigned char Write_Command_SD(unsigned char *CMD)   
  5. {   
  6.    unsigned char tmp;   
  7.    unsigned char retry=0;   
  8.    unsigned char i;   
  9.   
  10.    //禁止SD卡片选   
  11.    SPI_CS=1;   
  12.    //发送8个时钟信号   
  13.    Write_Byte_SD(0xFF);   
  14.    //使能SD卡片选   
  15.    SPI_CS=0;   
  16.   
  17.    //向SD卡发送6字节命令   
  18.    for (i=0;i<0x06;i++)    
  19.       
  20.       Write_Byte_SD(*CMD++);   
  21.    }   
  22.       
  23.    //获得16位的回应   
  24.    Read_Byte_SD(); //read the first byte,ignore it.    
  25.    do    
  26.     //读取后8位   
  27.       tmp Read_Byte_SD();   
  28.       retry++;   
  29.    }   
  30.    while((tmp==0xff)&&(retry<100));    
  31.    return(tmp);   
  32. }   

2) 初始化
SD卡的初始化是非常重要的,只有进行了正确的初始化,才能进行后面的各项操作。在初始化过程中,SPI的时钟不能太快,否则会造初始化失败。在初始化成功后,应尽量提高SPI的速率。在刚开始要先发送至少74个时钟信号,这是必须的。在很多读者的实验中,很多是因为疏忽了这一点,而使初始化不成功。随后就是写入两个命令CMD0与CMD1,使SD卡进入SPI模式
           初始化时序图:
  
  
           初始化例程:
 

 
  1. //--------------------------------------------------------------------------   
  2.     初始化SD卡到SPI模式   
  3. //--------------------------------------------------------------------------   
  4. unsigned char SD_Init()   
  5.     
  6.    unsigned char retry,temp;   
  7.    unsigned char i;   
  8.    unsigned char CMD[] {0x40,0x00,0x00,0x00,0x00,0x95};   
  9.    SD_Port_Init(); //初始化驱动端口   
  10.       
  11.    Init_Flag=1; //将初始化标志置1   
  12.   
  13.    for (i=0;i<0x0f;i++)    
  14.    {   
  15.       Write_Byte_SD(0xff); //发送至少74个时钟信号   
  16.    }   
  17.     
  18.    //向SD卡发送CMD0   
  19.    retry=0;   
  20.    do  
  21.    //为了能够成功写入CMD0,在这里写200次   
  22.      temp=Write_Command_SD(CMD);   
  23.      retry++;   
  24.      if(retry==200)    
  25.      //超过200次   
  26.        return(INIT_CMD0_ERROR);//CMD0 Error!   
  27.      }   
  28.       
  29.    while(temp!=1);  //回应01h,停止写入   
  30.       
  31.    //发送CMD1到SD卡   
  32.    CMD[0] 0x41; //CMD1   
  33.    CMD[5] 0xFF;   
  34.    retry=0;   
  35.    do  
  36.    //为了能成功写入CMD1,写100次   
  37.      temp=Write_Command_SD(CMD);   
  38.      retry++;   
  39.      if(retry==100)    
  40.      //超过100次   
  41.        return(INIT_CMD1_ERROR);//CMD1 Error!   
  42.      }   
  43.       
  44.    while(temp!=0);//回应00h停止写入   
  45.       
  46.    Init_Flag=0; //初始化完毕,初始化标志清零   
  47.       
  48.    SPI_CS=1;  //片选无效   
  49.    return(0); //初始化成功   
  50. }   
  51.   
  52.   

3) 读取CID
CID寄存器存储了SD卡的标识码。每一个卡都有唯一的标识码。
CID寄存器长度为128位。它的寄存器结构如下:
 

 

名称
数据宽度
CID划分
生产标识号
MID
8
[127:120]
OEM/应用标识
OID
16
[119:104]
产品名称
PNM
40
[103:64]
产品版本
PRV
8
[63:56]
产品序列号
PSN
32
[55:24]
保留
4
[23:20]
生产日期
MDT
12
[19:8]
CRC7校验合
CRC
7
[7:1]
未使用,始终为1
1
[0:0]

它的读取时序如下:
  
        与此时序相对应的程序如下:
 

 
  1. //------------------------------------------------------------------------------------   
  2.     读取SD卡的CID寄存器   16字节   成功返回0   
  3. //-------------------------------------------------------------------------------------   
  4. unsigned char Read_CID_SD(unsigned char *Buffer)   
  5. {   
  6.    //读取CID寄存器的命令   
  7.    unsigned char CMD[] {0x4A,0x00,0x00,0x00,0x00,0xFF};    
  8.    unsigned char temp;   
  9.    temp=SD_Read_Block(CMD,Buffer,16); //read 16 bytes   
  10.    return(temp);   
  11. }   

4)读取CSD
CSD(Card-Specific Data)寄存器提供了读写SD卡的一些信息。其中的一些单元可以由用户重新编程。           读取CSD 的时序:

  
           相应的程序例程如下:
 

 
  1. //-----------------------------------------------------------------------------------------   
  2.     读SD卡的CSD寄存器   共16字节    返回0说明读取成功   
  3. //-----------------------------------------------------------------------------------------   
  4. unsigned char Read_CSD_SD(unsigned char *Buffer)   
  5.   
  6.    //读取CSD寄存器的命令   
  7.    unsigned char CMD[] {0x49,0x00,0x00,0x00,0x00,0xFF};   
  8.    unsigned char temp;   
  9.    temp=SD_Read_Block(CMD,Buffer,16); //read 16 bytes   
  10.    return(temp);   
  11. }   

4) 读取SD卡信息
综合上面对CID与CSD寄存器的读取,可以知道很多关于SD卡的信息,以下程序可以获取这些信息。如下:

 
  1. //-----------------------------------------------------------------------------------------------  
  2. //返回   
  3. //  SD卡的容量,单位为M   
  4. //  sector count and multiplier MB are in    
  5. u08 == C_SIZE (2^(9-C_SIZE_MULT))   
  6. //  SD卡的名称   
  7. //-----------------------------------------------------------------------------------------------  
  8. void SD_get_volume_info()   
  9.      
  10.     unsigned char i;   
  11.     unsigned char c_temp[5];   
  12.     VOLUME_INFO_TYPE SD_volume_Info,*vinf;   
  13.     vinf=&SD_volume_Info; //Init the pointoer;   
  14. /读取CSD寄存器   
  15.     Read_CSD_SD(sectorBuffer.dat);   
  16. //获取总扇区数   
  17.  vinf->sector_count sectorBuffer.dat[6] 0x03;   
  18.  vinf->sector_count <<= 8;   
  19.  vinf->sector_count += sectorBuffer.dat[7];   
  20.  vinf->sector_count <<= 2;   
  21.  vinf->sector_count += (sectorBuffer.dat[8] 0xc0) >> 6;   
  22.  // 获取multiplier   
  23.  vinf->sector_multiply sectorBuffer.dat[9] 0x03;   
  24.  vinf->sector_multiply <<= 1;   
  25.  vinf->sector_multiply += (sectorBuffer.dat[10] 0x80) >> 7;   
  26. //获取SD卡的容量   
  27.  vinf->size_MB vinf->sector_count >> (9-vinf->sector_multiply);   
  28.  // get the name of the card   
  29.  Read_CID_SD(sectorBuffer.dat);   
  30.  vinf->name[0] sectorBuffer.dat[3];   
  31.  vinf->name[1] sectorBuffer.dat[4];   
  32.  vinf->name[2] sectorBuffer.dat[5];   
  33.  vinf->name[3] sectorBuffer.dat[6];   
  34.  vinf->name[4] sectorBuffer.dat[7];   
  35.  vinf->name[5] 0x00; //end flag    
  36. }   
  37.          以上程序将信息装载到一个结构体中,这个结构体的定义如下:   
  38. typedef struct SD_VOLUME_INFO   
  39. //SD/SD Card info   
  40.   unsigned int  size_MB;   
  41.   unsigned char sector_multiply;   
  42.   unsigned int  sector_count;   
  43.   unsigned char name[6];   
  44. VOLUME_INFO_TYPE;   

5) 扇区读
扇区读是对SD卡驱动的目的之一。SD卡的每一个扇区中有512个字节,一次扇区读操作将把某一个扇区内的512个字节全部读出。过程很简单,先写入命令,在得到相应的回应后,开始数据读取。
扇区读的时序:
  
      扇区读的程序例程:
 

 
  1. unsigned char SD_Read_Sector(unsigned long sector,unsigned char *buffer)   
  2.     
  3.    unsigned char retry;   
  4.    //命令16   
  5.    unsigned char CMD[] {0x51,0x00,0x00,0x00,0x00,0xFF};    
  6.    unsigned char temp;   
  7.       
  8.    //地址变换   由逻辑块地址转为字节地址   
  9.    sector sector << 9; //sector sector 512   
  10.   
  11.    CMD[1] ((sector 0xFF000000) >>24 );   
  12.    CMD[2] ((sector 0x00FF0000) >>16 );   
  13.    CMD[3] ((sector 0x0000FF00) >>8 );   
  14.   
  15.    //将命令16写入SD卡   
  16.    retry=0;   
  17.    do  
  18.     //为了保证写入命令  一共写100次   
  19.       temp=Write_Command_MMC(CMD);   
  20.       retry++;   
  21.       if(retry==100)    
  22.       {   
  23.         return(READ_BLOCK_ERROR); //block write Error!   
  24.       }   
  25.    }   
  26.    while(temp!=0);    
  27.          
  28.    //Read Start Byte form MMC/SD-Card (FEh/Start Byte)   
  29.    //Now data is ready,you can read it out.   
  30.    while (Read_Byte_MMC() != 0xfe);   
  31.    readPos=0;   
  32.   SD_get_data(512,buffer)  //512字节被读出到buffer中   
  33.  return 0;   
  34. }   
  35. 其中SD_get_data函数如下:   
  36. //----------------------------------------------------------------------------   
  37.     获取数据到buffer中   
  38. //----------------------------------------------------------------------------   
  39. void SD_get_data(unsigned int Bytes,unsigned char *buffer)    
  40. {   
  41.    unsigned int j;   
  42.    for (j=0;j<="" span="" style="word-wrap: break-word;">
  43.       *buffer++ Read_Byte_SD();   
  44. }   
  45.   

6) 扇区写
扇区写是SD卡驱动的另一目的。每次扇区写操作将向SD卡的某个扇区中写入512个字节。过程与扇区读相似,只是数据的方向相反与写入命令不同而已。
    扇区写的时序:
 

扇区写的程序例程:
 

 
  1. //--------------------------------------------------------------------------------------------   
  2.     写512个字节到SD卡的某一个扇区中去   返回0说明写入成功   
  3. //--------------------------------------------------------------------------------------------   
  4. unsigned char SD_write_sector(unsigned long addr,unsigned char *Buffer)   
  5.     
  6.    unsigned char tmp,retry;   
  7.    unsigned int i;   
  8.    //命令24   
  9.    unsigned char CMD[] {0x58,0x00,0x00,0x00,0x00,0xFF};    
  10.    addr addr << 9; //addr addr 512   
  11.     
  12.    CMD[1] ((addr 0xFF000000) >>24 );   
  13.    CMD[2] ((addr 0x00FF0000) >>16 );   
  14.    CMD[3] ((addr 0x0000FF00) >>8 );   
  15.   
  16.    //写命令24到SD卡中去   
  17.    retry=0;   
  18.    do  
  19.     //为了可靠写入,写100次   
  20.       tmp=Write_Command_SD(CMD);   
  21.       retry++;   
  22.       if(retry==100)    
  23.          
  24.         return(tmp); //send commamd Error!   
  25.       }   
  26.    }   
  27.    while(tmp!=0);    
  28.       
  29.   
  30.    //在写之前先产生100个时钟信号   
  31.    for (i=0;i<100;i++)   
  32.    {   
  33.       Read_Byte_SD();   
  34.    }   
  35.     
  36.    //写入开始字节   
  37.    Write_Byte_MMC(0xFE);    
  38.     
  39.    //现在可以写入512个字节   
  40.    for (i=0;i<512;i++)   
  41.    {   
  42.       Write_Byte_MMC(*Buffer++);    
  43.    }   
  44.   
  45.    //CRC-Byte    
  46.    Write_Byte_MMC(0xFF); //Dummy CRC   
  47.    Write_Byte_MMC(0xFF); //CRC Code   
  48.       
  49.        
  50.    tmp=Read_Byte_MMC();   // read response   
  51.    if((tmp 0x1F)!=0x05) // 写入的512个字节是未被接受   
  52.    {   
  53.      SPI_CS=1;   
  54.      return(WRITE_BLOCK_ERROR); //Error!   
  55.    }   
  56.    //等到SD卡不忙为止   
  57. //因为数据被接受后,SD卡在向储存阵列中编程数据   
  58.    while (Read_Byte_MMC()!=0xff){};   
  59.     
  60.    //禁止SD卡   
  61.    SPI_CS=1;   
  62.    return(0);//写入成功   
  63. }   
  64.   

单片机采用STC89LE单片机(SD卡的初始化电压为2.0V~3.6V,操作电压为3.1V~3.5V,因此不能用5V单片机,或进行分压处理),工作于22.1184M的时钟下,由于所采用的单片机中没硬件SPI,采用软件模拟SPI,因此读写速率都较慢。如果要半SD卡应用于音频、视频等要求高速场合,则需要选用有硬件SPI的控制器,或使用SD模式,有了 SPI模式的基础,SD模式应该不是什么难事。

关键字:单片机  SD卡  读写系列 引用地址:单片机对SD卡读写系列(二)

上一篇:单片机对SD卡读写系列(三)
下一篇:单片机对SD卡读写系列(一)

推荐阅读最新更新时间:2024-03-16 14:44

单片机电路设计建议
立题简介: 内容:介绍单片机基本电路构成; 来源:综合实际使用得出; 作用:统一总结单片机设计时所需电路,避免遗漏; PCB环境:Altium Designer、PADS; 日期:2018-03-06; =====================分割线======================== 立题详解: 在之前介绍过“STM32”和“STM8”单片机,对单片机入门而言,多是从“89C51”开始;“89C51”无愧是“经典级单片机”,在数十年前,微控制器技术并不发达,8bit单片机普及率很低,而“89C51”凭借价格、性能逐步占领市场,即使到了今天,“89C51”仍应用于很多场合;譬如现在“校园外”所设计的“自动门”,其“控
[单片机]
基于XC2300系列MCU的电子动力转向系统
如今电子动力转向系统(EPS)已经成为减少二氧化碳排放的关键要素之一。因此各种不同类型的汽车都装备有机电动力转向系统。那么在实现电子助力转向系统时需要用到哪些技术呢? EPS就是一种机电动力转向系统,它用电子控制的电机代替原来的水压助力转向装置。EPS系统在发动机仓内占用更少的空间,更容易组装,而且能够节省燃油消耗。另外它在转向系统中不再使用有毒的液压油。在小型车辆中,电机是通过齿轮箱连接到转向柱的,而在中型汽车内,电机利用凸缘架斜向或纵向安装在齿轮架上,并通过齿轮箱操作。当司机转动方向盘时,电机就为转向系统提供动力。 EPS系统工作原理 电子动力转向系统由一个控制单元、众多传感器和一个无刷电机组成。控
[单片机]
基于XC2300<font color='red'>系列</font><font color='red'>MCU</font>的电子动力转向系统
国产内核MCU怎样点燃汽车和IoT双擎
IoT生态的逐步成熟和汽车的电子智能化,成为MCU发展的双擎。以这两大应用为核心,结合5G、AI等新技术,MCU正在快速渗透进各种细分领域。 在国内市场,国产MCU更是厚积薄发,在各个战场“攻城略地”。在2020年慕尼黑电子展上,国产MCU代表厂商芯旺微就携8位和32位MCU系列亮相,一展国产自主MCU内核“kungFu”的风采。 作为国内较早自主开发内核的MCU芯片厂商,芯旺微已经形成了完整的MCU布局,成功向应用市场推出了KF8F、KF8L、KF8A、KF8TS、KF8S等多种8位MCU产品和KF32A、KF32F、KF32L、KF32LS等32位MCU产品。 就在几天之前,芯旺微电子刚刚收获2020年度中国IC设计成
[手机便携]
国产内核<font color='red'>MCU</font>怎样点燃汽车和IoT双擎
51单片机串口通信的原理与应用流程解析
一、原理简介 51 单片机内部有一个全双工串行接口。什么叫全双工串口呢?一般来说,只能接受或只能发送的称为单工串行;既可接收又可发送,但不能同时进行的称为半双工;能同时接收和发送的串行口称为全双工串行口。串行通信是指数据一位一位地按顺序传送的通信方式,其突出优点是只需一根传输线,可大大降低硬件成本,适合远距离通信。其缺点是传输速度较低。 与之前一样,首先我们来了解单片机串口相关的寄存器。 SBUF 寄存器:它是两个在物理上独立的接收、发送缓冲器,可同时发送、接收数据,可通过指令对SBUF 的读写来区别是对接收缓冲器的操作还是对发送缓冲器的操作。从而控制外部两条独立的收发信号线RXD(P3.0)、TXD(P3.1),同时发送、接
[单片机]
51<font color='red'>单片机</font>串口通信的原理与应用流程解析
单片机SD卡读写系列(一)
SD卡,是一种基于半导体快闪记忆器的新一代记忆设备,SD于1999年8月研制成功,其重量只有2克。但却拥有高记忆容量、快速数据传输率、极大的移动灵活性以及很好的安全性。SD卡也很容易重新格式化,有广泛的应用领域,如音乐、电影、新闻等多媒体文件都可以方便地保存,数码相机也开始支持SD卡。SD卡容量最高能达到4GB。 SD卡在24mm 32mm 2.1mm的体积内结合了〔SanDisk〕快闪记忆卡控制与MLC(Multilevel Cell)技术和Toshiba(东芝)0.16u及0.13u的NAND技术,通过9针的接口界面与专门的 驱动器 相连接,不需要额外的 电源 来保持其上记忆的信息。而且它是一体化固体介质,没有任何移动部分,所以
[单片机]
为什么选择AVR单片机
为什么选用AVR单片机? (1) 为什么选用AVR单片机? Flash程序存储器可擦写1000次以上,不再有报废品产生。PIC 有的是OTP,只能烧录一次。AVR程序存储器数据为16位组织,也可按8位理解。PIC是12/14位程序 存储器,作寄存器转移和算术、逻辑运算带来不便。 (2) 为什么选用AVR单片机? 高速度(50ns)、低功耗!硬件应用Harward结构,具有预取指令功能, 使得指令可以在一个时钟周期内执行。PIC要4个时钟周期执行一条指令。MSC-51要12个时钟周期 执行一条指令。 (3) 为什么选用AVR单片机? 超功能精简指令!具有32个通用工作寄存器(相当于8051中的32个累 加器,克服了单一累加
[单片机]
基于C语言STC89C52单片机电子密码锁的设计与仿真
搜索: IC库存 认证库存 PDF 文章 用户名: 密码: 社区 企业 免费注册 iframe marginWidth=0 marginHeight=0 src="http://afp21ic.allyes.com/main/adfshow?user=Afp21ic|MCU|logo_left&db=afp21ic&border=0&local=yes" frameBorder=0 width=758 scrolling=no height=64 /iframe 首页 资讯: 新闻 应用 新品 eBooks 电路图
[单片机]
以C8051F020单片机为系统控制器件的实时检测和记录车辆散热系统动态参数电路设计
1 引言 车辆的系统散热性是衡量其先进性的一个重要标志,因为车辆的各个部件和系统都存在一个最佳的工作温度区间,在此温度范围内零部件的各项性能指标才能得以保证。目前,我国车辆系统的研制已进入自行研制、自主创新的发展阶段,由于缺乏实车试验测试条件,加上车辆工作环境的复杂性,导致有效的实车试验数据严重缺乏,试验周期长,数据可复现性差,无法向工程设计部门提供准确有效的实车试验数据,严重影响车辆总体技术的进一步发展。因此,本文着重于在不改变车辆现有结构和性能的前提下,采用单片机控制系统、传感器技术、数据存储技术、实时时钟技术,研制一套能实时检测和记录车辆散热系统动态参数的电子电路。 2 系统总体构架设计 该散热系统参数测试电路由上位微型计算
[单片机]
以C8051F020<font color='red'>单片机</font>为系统控制器件的实时检测和记录车辆散热系统动态参数电路设计
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved