参考资料:
http://blog.csdn.net/jdh99/article/details/7603029
http://www.openedv.com/posts/list/3159.htm
上面提到的两篇博文比较详细深刻的说明了DMA的工作方式以及SPI的DMA传输方式的特点。结合对Stm32F103VET6中SPI的DMA传输方式的配置和学习谈谈感受,在看下面的内容之前请先看上面的两篇参考博文,这里就不在说明。
要使用SPI的DMA功能,首先配置好SPI外设,这里以SPI1为例子。下面的代码初始化了SPI1对应的GPIO以及SPI1工作的模式。
void SpiCC3000Init(void)
{
SPI_InitTypeDef SPI_InitStructure;
GPIO_InitTypeDef GPIO_InitStructure;
/*!< Disable SPI */
SPI_Cmd(SPI_USED, DISABLE);
/*!< DeInitializes the SPI */
SPI_I2S_DeInit(SPI_USED);
/*!< SPI Periph clock disable */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2 , DISABLE);
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1 , DISABLE);
/*Enable SPI2 Clock */
RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2,ENABLE);
RCC_APB2PeriphClockCmd( RCC_APB2Periph_GPIOB, ENABLE);
/*Enable SPI1 Clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1 |RCC_APB2Periph_GPIOA,ENABLE);
/*Config SCLK and MOSI */
GPIO_InitStructure.GPIO_Pin = SPI_CLK_PIN| SPI_MOSI_PIN;//
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;//AF_PP
GPIO_Init(SPI_PORT, &GPIO_InitStructure);
/*!< Configure SPI pins: MISO */
GPIO_InitStructure.GPIO_Pin = SPI_MISO_PIN;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;
GPIO_Init(SPI_PORT, &GPIO_InitStructure);
/*!< Configure SPI pins: CS output high */
GPIO_InitStructure.GPIO_Pin = SPI_CS_PIN;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(SPI_PORT, &GPIO_InitStructure);
GPIO_SetBits(SPI_PORT,SPI_CS_PIN);
/*!< CC3000 SPI Init */
SPI_StructInit(&SPI_InitStructure);
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_Low;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_8;/* The buadrate is a fraction of the 72MHz clock*/
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_InitStructure.SPI_CRCPolynomial = 7;
SPI_Init(SPI_USED, &SPI_InitStructure);
SPI_SSOutputCmd(SPI_USED,ENABLE);//NSS(CS)
SPI_Cmd(SPI_USED, ENABLE);
/*Configure SPI for DMA Operation*/
#if defined(ENABLE_SPI_DMA)
SpiCC3000DMAInit();
#else
SpiRxInterruptClkInit();
#endif
}
在配置好SPI1以后,配置DMA1功能(选择SPI1的Tx连接到DMA上),因为SPI1对应的DMA功能由DMA1来实现。 下面函数中的DMA时钟将在调用它的函数中开启。
void C3000_DMA_Config(SPI_DMADirection_TypeDef Direction, uint8_t* buffer, uint16_t NumData)
{
#if defined(ENABLE_SPI_DMA)
DMA_InitTypeDef DMA_InitStructure;
/* Initialize the DMA_PeripheralBaseAddr member */
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t )&SPI1->DR; //SPI_DR_BASE; //
//DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t )&SPI2->DR; //SPI_DR_BASE; //
/* Initialize the DMA_MemoryBaseAddr member */
DMA_InitStructure.DMA_MemoryBaseAddr = (uint32_t)buffer;
/* Initialize the DMA_PeripheralInc member */
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
/* Initialize the DMA_MemoryInc member */
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
/* Initialize the DMA_PeripheralDataSize member */
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
/* Initialize the DMA_MemoryDataSize member */
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
/* Initialize the DMA_Mode member */
//yichuan
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
//DMA_InitStructure.DMA_Mode = DMA_Mode_Circular;
/* Initialize the DMA_Priority member */
DMA_InitStructure.DMA_Priority = DMA_Priority_VeryHigh;
/* Initialize the DMA_M2M member */
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable;
/* If using DMA for Reception */
if (Direction == SPI_DMA_RX)
{
/* Initialize the DMA_DIR member */
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;
/* Initialize the DMA_BufferSize member */
DMA_InitStructure.DMA_BufferSize = NumData;
DMA_DeInit(SPI_DMA_RX_CHANNEL);
DMA_Init(SPI_DMA_RX_CHANNEL, &DMA_InitStructure);
}
/* If using DMA for Transmission */
else if (Direction == SPI_DMA_TX)
{
/* Initialize the DMA_DIR member */
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralDST;
/* Initialize the DMA_BufferSize member */
DMA_InitStructure.DMA_BufferSize = NumData;
DMA_DeInit(SPI_DMA_TX_CHANNEL);
DMA_Init(SPI_DMA_TX_CHANNEL, &DMA_InitStructure);
}
#endif
}
配置好DMA1和SPI1后,要做的事情就是把二者联合起来,且配置DMA1的发送完成中断。
void SpiCC3000DMAInit(void)
{
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE);
NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);
DMA_DeInit(SPI_DMA_RX_CHANNEL);
DMA_DeInit(SPI_DMA_TX_CHANNEL);
/* Configure and enable SPI DMA TX Channel interrupt */
// NVIC_RxInt_InitStructure.NVIC_IRQChannel = DMA1_Channel5_IRQn; //SPI2 TX
NVIC_RxInt_InitStructure.NVIC_IRQChannel = DMA1_Channel3_IRQn;//SPI1 TX // not config the Rx channel
NVIC_RxInt_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_RxInt_InitStructure.NVIC_IRQChannelSubPriority = 0;//0
NVIC_RxInt_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_RxInt_InitStructure);
/* Configure DMA Peripheral but don't send data*/
C3000_DMA_Config(SPI_DMA_RX, (uint8_t*)wlan_rx_buffer,0);
//C3000_DMA_Config(SPI_DMA_TX, (uint8_t*)wlan_tx_buffer,0);
C3000_DMA_Config(SPI_DMA_TX, (uint8_t*)wlan_tx_buffer,1700); //buffer is 1700
/* Enable SPI DMA request */
SPI_I2S_DMACmd(SPI_USED,SPI_I2S_DMAReq_Tx, ENABLE);
SPI_I2S_DMACmd(SPI_USED,SPI_I2S_DMAReq_Rx, ENABLE);
/* Enable the DMA Channels Interrupts */
/*It should be put after the DMA config */
DMA_ITConfig(SPI_DMA_TX_CHANNEL, DMA_IT_TC, ENABLE);
/* Enable DMA RX Channel */
DMA_Cmd(SPI_DMA_RX_CHANNEL, ENABLE);
/*Note: Enable the SPI_DMA Channel,it begin SPI translate*/
/* Enable DMA TX Channel ,begin the dma translate*/
DMA_Cmd(SPI_DMA_TX_CHANNEL, ENABLE);
}
这里要强调的是:使能DMA中断标志的语句DMA_ITConfig(SPI_DMA_TX_CHANNEL, DMA_IT_TC, ENABLE); 应当放到DMA1配置完以后,不然发送数据完成以后,不会进入中断处理函数,就是相当于发送完成后产生中断的这个功能并没有配置成功,如果放到DMA1配置前面。下面的图片是参考手册中关于DMA的配置过程,其中中断的使能在第六步,所以应当在DMA初始化完成后,再使能中断功能。
接下来就是中断处理函数了,响应传输完成中断的产生
void DMA1_Channel3_IRQHandler(void)
{
if(DMA_GetITStatus(DMA1_IT_TC3)==SET)
{
GPIO_InitTypeDef GPIO_InitStructure;
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOC,ENABLE);
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
GPIO_Init(GPIOC, &GPIO_InitStructure);
GPIO_ResetBits(GPIOC,GPIO_Pin_6);
}
DMA_ClearITPendingBit(DMA1_IT_TC3);
}
最后启动DMA传输是通过DMA_Cmd(SPI_DMA_TX_CHANNEL, ENABLE) 这句话实现,当DMA通道被使能以后,它就自动开始传输数据,而不影响CPU其干其它事情,直到DMA传输完数据产生中断时,CPU才会去处理中断函数。
上一篇:谈谈STM32F051的 ADC DMA用法
下一篇:stm32的SPI总结
推荐阅读最新更新时间:2024-11-10 18:17
设计资源 培训 开发板 精华推荐
- 使用 Microchip Technology 的 LX24132AILQ 的参考设计
- NCV8535 超高准确度、低 Iq、500 mA 低压差稳压器的典型应用,固定版本启用
- 使用 Analog Devices 的 LT3420EDD-1 的参考设计
- 基于STM32的MP3播放器设计与实现(提供MDK完整源码)
- 使用 Analog Devices 的 LTC4162IUFD-L40 的参考设计
- 使用 Analog Devices 的 LTC1148 的参考设计
- HT42B534验证板
- 小汐 & 阿曈 -> 中文固件多管型 Wi-Fi 盖革计数器
- 多功能电子分频器前级(已做出实物并验证功能)
- LTC2668IUJ-12、16 通道、12 位 ±10V VOUT SoftSpan DAC 的典型应用电路