MSP430与I2C总线接口技术的高效输出方案研究

发布者:psi33最新更新时间:2020-08-14 来源: elecfans关键字:MSP430  I2C总线  接口技术  高效输出 手机看文章 扫描二维码
随时随地手机看文章

MSP430单片机自从2000年问世以来,就以其功能完善、超低功耗、开发简便的特点得到了许多设计人员的青睐。MSP430与传统的51单片机在结构上有很大的区别。其中之一就是:在MSP430的外围接口电路中,没有提供像51那样控制外设读、写、地址锁存信号的硬件电路。与这种接口电路相适应,MSP430更倾向使用I2C总线以及ISP等基于串行接口的外围器件。另一方面,随着I2C技术的发展和成熟,其硬件结构简单、高速传输、器件丰富等特点使该类器件的应用越来越广泛。因此研究新型单片机MSP430与I2C总线接口技术有着重要的意义。本文针对这一问题进行研究,分析研究了 MSP430与I2C总线接口的原理和方法,提出了高效的接口方法,介绍了优化的程序。 [b]1 MSP430单片机I/O端口控制特点 与8031单片机相比,MSP430的I/O端口的功能要强大的多,其控制的方法也更为复杂。MSP430的I/O端口可以实现双向的输入、输出;完成一些特殊功能如:驱动LCD、A/D转换、捕获比较等;实现I/O各种中断。MSP430采用了传统的8位端口方式保证其兼容性,即每个I/O端口控制8个I/O引脚。为了实现对I/O端口每一个引脚的复杂控制


MSP430中的每个I/O口都对应一组8位的控制寄存器(如图1)。寄存器中的每一位对应一个I/O引脚,实现对该引脚的独立控制。寄存器的功能和数目是由该I/O口所能完成的功能以及类型确定的。[2] 图1为MSP430的一个I/O端口的控制结构示意图。对于最基本的只能完成输入、输出功能的I/O端口其控制寄存器只有3个。其中,输入寄存器保存输入状态;输出寄存器保存输出的状态,方向寄存器控制对应引脚的输入、输出状态。本文中用来实现I2C总线接口的P6.6、P6.7都属于这类的端口。此外,有些I/O端口不但可以用作基本的输入输出,而且可以用作其他用途,比如可以作为LCD的驱动控制引脚。这类端口的控制功能寄存器实现引脚功能状态的切换。再者,有一类端口不但可以完成上述两种端口的功能,而且可以实现中断功能。该类端口拥有图1中所有的寄存器,中断触发的方式以及中断的屏蔽性都可以通过相应的寄存器控制。本文中使用的P2.0就属于该类端口,利用它来接收LM92发出的中断。

MSP430与I2C总线接口技术的高效输出方案研究

通过上述的控制结构,MSP430的I/O端口可以实现很丰富的功能。不仅如此,其中一些I/O口还可以与MSP430中的特殊模块相结合完成更为复杂的工作。如与捕获比较模块相结合可以实现串行通信,与A/D模块结合实现A/D转换等。此外,MSP430 I/O端口的电器特性也十分突出,几乎所有的I/O口都有20mA的驱动能力,对于一般的LED、蜂鸣器可以直接驱动无需辅助电路。许多端口内部都集成了上拉电阻,可以方便与外围器件的接口。 

2 MSP430与I2C总线器件接口 通过上述的介绍了解了MSP430中I/O口的一些控制特点。以下介绍如何利用这些特点实现I2C总线的接口。如图2所示,使用41系列单片机的 P6.6产生I2C总线的时序同步信号;使用P6.7完成I2C总线的串行数据输入输出;利用P2.0接收LM92产生的中断信号。基于I2C总线规范,通过对LM92的A0、A1和AT240的A0、A1、A2设定不同的器件地址,两个器件可以共用SCL、SDA。

MSP430与I2C总线接口技术的高效输出方案研究

2.1 I/O端口引脚控制 与8031不同,MSP430没有位空间,也没有专门执行位操作的控制电路。那么对于一个指定的I/O端它是如何进行控制的呢?MSP430中有关位操作的指令都是通过逻辑运算实现的。[3]例如: BISB #01000010B,P1OUT ; 将P1.6和P1.1置位XORB #01000010B,P1OUT ; 逻辑或运算 该例中的置位指令BISB是用原操作数(01000010)与目的操作数(P1OUT)做逻辑或运算得到的。因此该命令与第二行的指令是等效的。虽然,这样的控制方法比起8031略显复杂,但它的控制能力有所增强。从例子中不难看出,这种方式可以同时控制多个端口位。 [b]2.2 简化I2C接口的方法 众所周知,实现I2C总线协议主要是控制SDA、SCL使其产生协议所规定的各种时序。要控制P6.7、P6.6产生I2C总线要求的各种时序,就要频繁使用到输入、输出以及方向寄存器。而要减少代码的量,简化接口控制,最直接的方法就是减少有关寄存器操作次数。要实现这一想法需要软硬件结合,充分利用I/O口的特点以及I2C总线协议的特点。

MSP430与I2C总线接口技术的高效输出方案研究

仔细观察图3的基本数据操作时序[1]可以发现:第一,I2C总线在无数据传输时均处于高电平状态;第二,SDA引脚是数据的输入输出端,它的状态变化最为复杂,控制它需要频繁的使用P6IN、P6OUT、P6DIR三个寄存器。 图2中的R1、R2是上拉电阻,其阻值由选用的I2C总线器件的电器特性确定。在本文中这两个电阻不但起上拉的作用,还有助于解决第一个问题。当 P6.6、P6.7处于接收状态时,上拉电阻可以将该点的电平拉升为VCC,从而确保总线空闲时有稳定的高电平。 延续以上的思路可以发现,方向寄存器相应位为输入时,就等于给I2C从器件发送了逻辑“1”。那么如何发送逻辑“0”呢?将对应的方向控制位设为输出,然后输出寄存器相应位置为“0”就可以实现。再进一步,如果将输出寄存器对应为设为“0”,只控制方向寄存器的变化就可以发送两种逻辑电平。这样,在发送数据时只需要控制方向寄存器。对于SDA需要频繁切换输入输出状态的特点,本方法可以减少15%左右的代码量,并使程序更清晰。这样就为第二个问题找到了很好的解决方法。 

3 I2C总线控制时序的实现 以上讲述了I2C总线最基本的操作时序。I2C总线中的各种操作都是由这些基本操作组合完成的。由于I2C总线器件的类型、功能、结构不尽相同,因此每一种器件具体控制时序有所区别。图4是AT2402读取指定字节数据控制时序。从图中可以看出一个读取操作中要使用到起始、发送字节、处理回应、接收字节、停止这些基本操作。附录中的代码就实现了这个时序。对于AT2402还有其他控制的时序,如字节写时序、数据页读时序、地址读取时序等等[1]。附录中代码对基本操作分别编写为子程序。对于不同的功能时序,可以通过子程序的调用来实现。

MSP430与I2C总线接口技术的高效输出方案研究

LM92是一种高精度的温度传感器,它也采用I2C总线方式控制。图5是该器件读取温度数据的时序。因为它的功能和结构与AT2402有很大的区别,所以二者控制时序不尽相同。如图4和图5,虽然都是实现读取操作,但是二者时序差别很大,LM92的控制时序明显要复杂的多。不过仔细分析可以看出这些时序也都是由一些基本操作组合实现的。这样就可以在上述方法的基础上完善LM92所需要的基本操作子程序,进而根据时序需要安排子程序实现对LM92的各种控制。

MSP430与I2C总线接口技术的高效输出方案研究

综上所述,要实现I2C总线的控制时序,需要仔细分析各种器件的时序要求及特点,构建所有的基本操作,并按时序要求合理安排基本操作。 [b]4结束语 应用上述的设计方法和电路,实现了MSP430与I2C总线器件的接口,很好的控制AT2402和LM92,达到了预期的目标。实践证明该方法对实现I2C总线器件控制非常有效,而且使用该方法编制的程序代码量小,执行效率高。该方法为MSP430与I2C总线接口提供了一种可行的方案。

关键字:MSP430  I2C总线  接口技术  高效输出 引用地址:MSP430与I2C总线接口技术的高效输出方案研究

上一篇:MSP430单片机的LED驱动电路原理解析
下一篇:基于MSP430的函数信号发生器设计方案

推荐阅读最新更新时间:2024-11-02 10:11

BQ24195的使用:与MSP430G2553的I2C通信
前言 本文作为bq24195的I2C使用教程,主要涉及I2C通信代码的实现以及一些注意事项,硬件部分稍有涉及但不是主要内容。 正文 硬件连接图: I2C的上拉电阻10K或4.7K都行,阻值影响的是跳变沿的时间,即使fast mode I2C通信的频率也才400k左右,所以影响不大。 软件例程 我们用的是G2553的硬件I2C,有中断法和查询法,不想用中断的可以用查询法。如果选择了低功耗,建议用中断法。 MSP430G2553硬件I2C驱动-中断法 IT已经给我们准备好了,直接照搬msp430g2xx3_usci_i2c_standard_master.c例程就行。稍微整理一下做成i2c.h和i2c.c文件,力求简
[单片机]
BQ24195的使用:与<font color='red'>MSP430</font>G2553的I2C通信
液晶显示模块MGLS-12864的接口技术及其应用
随着液晶显示技术的发展和仪表智能化程度的提高,人们对信息显示方式的要求也在不断提高,传统的数字显示已经不能表达复杂的信息。而液晶显示器(LCD)则以其重量轻、电压低、功耗小、显示内容丰富等优点逐渐在单片机控制的智能仪器仪表、工业控制等领域得到广泛应用。 矿用隔爆馈电开关是煤矿井下配电系统的关键设备,其性能好坏直接影响煤矿井下的生产安全和生产效率。目前大部分矿井馈电开关保护器的显示通常是发光二极管或LED数字显示,并且大部分用灯来显示故障。 为了改进馈电开关的显示功能,利用单片机8031和液晶显示器设计了一种具有汉字显示功能的显示系统,该系统能够通过液晶显示器实时显示开关的工作参数(电压、电流等)、工作状态、供电线路的故障原
[电源管理]
液晶显示模块MGLS-12864的<font color='red'>接口技术</font>及其应用
基于MSP430的智能家居系统
0 引言 随着数字信息技术和网络技术的高速发展,以及人们物质生活水平的不断提高,人们的工作、生活与通讯、信息的关系日益紧密,可以说信息化社会正在逐步改变人们的生活方式与工作习惯,同时也对传统的住宅提出了挑战,智能家居便应运而生了。 智能家居在保持了传统居住功能的基础上,摆脱了被动模式,成为具有能动性智能化的现代工具。它不仅提供了全方位的信息交换功能,还优化了人们的生活方式和居住环境,帮助人们有效地安排时间、节约各种能源,实现了家电(如空调、热水器等)控制、照明控制、室内外遥控、窗帘自控、定时控制等。 1 系统构成 本文以MSP430微处理器为核心,把无线网络平台应用到智能家居上,实现了智能家居的无线控制和智能控制。基
[单片机]
基于<font color='red'>MSP430</font>的智能家居系统
MSP430在CCS开发环境下的内存分配
用CCS开发环境以及有一年多了,之前写程序,仅仅是停留在写程序的阶段,从来没有想过内存是如何分配的。这次做这个,由于程序的代码量比较大,有40K+,所以在程序整合编译的过程中,遇到了一些之前没有遇到过的问题,在查阅了一些资料之后,解决了这些问题,在这里做一下总结。 首先,我们先抛出遇到的问题。在将程序整合之后,编译报错了,报的错误如下图所示。这个问题是说重定向时,重定向的地址为17位,太大了,超过了16位译码的范围。 这里这个问题我是这样理解的,是这些函数中需要调用一些字符串常量(根据错误定位得出的结论),这时候需要跳转到这个常量所在的地址,但是由于这个地址离当前函数所在的地址“太远了”,所以没有办法跳转到那里执行。
[单片机]
<font color='red'>MSP430</font>在CCS开发环境下的内存分配
MSP430G2553 WDT的NMI中断例子
将 RST/NMI 引脚设为 NMI 模式,主程序中点亮 P1.0 口 LED,在 NMI 中断中关掉 LED。现象为当按下 RST 按键时,LED 熄灭,并且再也不亮(除非重新上电)。 #include MSP430G2553.h void main( void ) { WDTCTL = WDTPW + WDTHOLD +WDTNMI; //NMI模式(非Reset模式) IE1=NMIIE; //开NMI中断,无需开总中断 P1DIR |=BIT0; //P1.0设为输出口 P1OUT |=BIT0; //亮灯 LPM
[单片机]
基于MSP430的零序直流小电流接地选线装置设计
  1 引言   小电流接地系统(NUGS)广泛应用于国内的供用电系统,66kV, 35kV,6kV, 3kV和部分380V系统均为NUGS,接地方式多为不接地系统(NUS)或消弧线圈接地系统(NES),近年也出现了电阻接地方式(NRS)。因NUGS中单相接地电流很小,但是,长时间的接地运行,极易形成两相接地短路,弧光接地还会引起全系统过电压,保护或选线难度很大。为此,生产实践中希望尽快准确地选出故障线路并及时将之切除。国内自1958年以来从第一台小电流接地故障选线装置研制成功到现在,电网单相接地故障选线问题的研究已经走过了几十年的历程,但现场运行的结果表明 ,装置的选线效果并不理想,平均80%的选线装置因为选线效果不佳退出了运
[单片机]
基于<font color='red'>MSP430</font>的零序直流小电流接地选线装置设计
MSP430F5438A的BSL下载电路小问题
TI很贴心的给了BSL下载电路的原理图,虽然部分东西看着有点抽象: 然后,在后面的说明中给出了一个表格: 可见一般的MSP430单片机利用的是P1.1和P2.2这两个IO端口作为BSL的TX和RX端(4系列特殊些,1.0和1.1),但是5438A却更特殊,注意表下面的一行小字,每个设备的BSL的详细信息请分别看各自的datasheet,TI你多说两句不行么,后来我发现我错怪他了,他真的在这份BSL的说明文档中“多说”了“两句”,这是一个第五章的表格: 又是见datasheet……你这不和没说一样么 翻出了datasheet才发现: 5438A的BSL下载TX和RX分别是P1.1和P1.2
[单片机]
<font color='red'>MSP430</font>F5438A的BSL下载电路小问题
以太网控制芯片W5100的存储装置设计
引言     网络的开放性和全球化,促进了人类知识的共享和经济的全球化。以太网技术以其灵活方便的连接方式、良好的开放性、高效、成本低等优点,已经广泛地应用于各种计算机网络,并且还在不断地发展。目前,网络技术在电子产品中的应用越来越广,更多的设备需要提供网络接口,以方便与外部互联通信。     随着技术的不断发展,越来越多的测试系统、控制机构等都需要实时地、快速地并且远距离地传输数据。传统的存储装置利用RS232、RS485等串口,数据传输速率非常有限,面对大数据量实时传输的要求显得无能为力。现在流行的USB总线可以达到非常高的传输速率,但传输距离有较大的限制。利用以太网接口实现快速、远距离的数据传输和存储是一种非常好的解决
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved