一、串口初始化过程
1、时钟使能;
2、GPIO初始化;
3、串口波特率设置;
4、串口控制;
5、数据发送与接收
二、几个重要的串口函数
HAL_StatusTypeDef HAL_UART_Init(UART_HandleTypeDef *huart); // 串口初始化
HAL_StatusTypeDef HAL_UART_Transmit(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout); // 串口发送
HAL_StatusTypeDef HAL_UART_Receive(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size, uint32_t Timeout); // 串口接收
__HAL_UART_ENABLE_IT(__HANDLE__, __INTERRUPT__) // 串口中断使能
void HAL_NVIC_SetPriority(IRQn_Type IRQn, uint32_t PreemptPriority, uint32_t SubPriority); // 设置中断优先级
void HAL_NVIC_EnableIRQ(IRQn_Type IRQn); // 使能中断
三、几个重要的结构
// 串口初始化结构体 包含了串口句柄 波特率配置 发送接收缓存 dma等
// 我们只描述前两个基本功能,对效率要求极高可以使用DMA。
typedef struct
{
USART_TypeDef *Instance; /*!< UART registers base address */
UART_InitTypeDef Init; /*!< UART communication parameters */
UART_AdvFeatureInitTypeDef AdvancedInit; /*!< UART Advanced Features initialization parameters */
uint8_t *pTxBuffPtr; /*!< Pointer to UART Tx transfer Buffer */
uint16_t TxXferSize; /*!< UART Tx Transfer size */
uint16_t TxXferCount; /*!< UART Tx Transfer Counter */
uint8_t *pRxBuffPtr; /*!< Pointer to UART Rx transfer Buffer */
uint16_t RxXferSize; /*!< UART Rx Transfer size */
uint16_t RxXferCount; /*!< UART Rx Transfer Counter */
uint16_t Mask; /*!< UART Rx RDR register mask */
DMA_HandleTypeDef *hdmatx; /*!< UART Tx DMA Handle parameters */
DMA_HandleTypeDef *hdmarx; /*!< UART Rx DMA Handle parameters */
HAL_LockTypeDef Lock; /*!< Locking object */
__IO HAL_UART_StateTypeDef gState; /*!< UART state information related to global Handle management
and also related to Tx operations.
This parameter can be a value of @ref HAL_UART_StateTypeDef */
__IO HAL_UART_StateTypeDef RxState; /*!< UART state information related to Rx operations.
This parameter can be a value of @ref HAL_UART_StateTypeDef */
__IO uint32_t ErrorCode; /*!< UART Error code */
}UART_HandleTypeDef;
// 串口的操作句柄 如 USART1 USART2 USART3等
typedef struct
{
__IO uint32_t CR1; /*!< USART Control register 1, Address offset: 0x00 */
__IO uint32_t CR2; /*!< USART Control register 2, Address offset: 0x04 */
__IO uint32_t CR3; /*!< USART Control register 3, Address offset: 0x08 */
__IO uint32_t BRR; /*!< USART Baud rate register, Address offset: 0x0C */
__IO uint32_t GTPR; /*!< USART Guard time and prescaler register, Address offset: 0x10 */
__IO uint32_t RTOR; /*!< USART Receiver Time Out register, Address offset: 0x14 */
__IO uint32_t RQR; /*!< USART Request register, Address offset: 0x18 */
__IO uint32_t ISR; /*!< USART Interrupt and status register, Address offset: 0x1C */
__IO uint32_t ICR; /*!< USART Interrupt flag Clear register, Address offset: 0x20 */
__IO uint32_t RDR; /*!< USART Receive Data register, Address offset: 0x24 */
__IO uint32_t TDR; /*!< USART Transmit Data register, Address offset: 0x28 */
} USART_TypeDef;
// 设置串口的各个参数 波特率 字长 停止位 奇偶校验 收发模式 硬件流 过采样
// 字长:8位/9位
// 停止位:1位/2位
typedef struct
{
uint32_t BaudRate; /*!< This member configures the UART communication baud rate.
The baud rate register is computed using the following formula:
- If oversampling is 16 or in LIN mode,
Baud Rate Register = ((PCLKx) / ((huart->Init.BaudRate)))
- If oversampling is 8,
Baud Rate Register[15:4] = ((2 * PCLKx) / ((huart->Init.BaudRate)))[15:4]
Baud Rate Register[3] = 0
Baud Rate Register[2:0] = (((2 * PCLKx) / ((huart->Init.BaudRate)))[3:0]) >> 1 */
uint32_t WordLength; /*!< Specifies the number of data bits transmitted or received in a frame.
This parameter can be a value of @ref UARTEx_Word_Length */
uint32_t StopBits; /*!< Specifies the number of stop bits transmitted.
This parameter can be a value of @ref UART_Stop_Bits */
uint32_t Parity; /*!< Specifies the parity mode.
This parameter can be a value of @ref UART_Parity
@note When parity is enabled, the computed parity is inserted
at the MSB position of the transmitted data (9th bit when
the word length is set to 9 data bits; 8th bit when the
word length is set to 8 data bits). */
uint32_t Mode; /*!< Specifies whether the Receive or Transmit mode is enabled or disabled.
This parameter can be a value of @ref UART_Mode */
上一篇:STM32F7xx —— CAN通信
下一篇:STM32F7xx —— 输入
推荐阅读最新更新时间:2024-11-09 23:02
设计资源 培训 开发板 精华推荐
- NCP1014LEOGTTGEVB,NCP1014 评估板,用于电视的 8W 交流转直流单输出电源
- 合宙esp32c3的投币音乐玩具
- WIFIkill缩小版板厚1.2mm
- AM6TW-2415DH35Z ±15V 6 瓦双路输出 DC-DC 转换器的典型应用
- 使用 Analog Devices 的 LT1118CS8-2.85 的参考设计
- AM2M-0505SH30-NZ 5 Vout、2W 单路输出 DC-DC 转换器的典型应用
- SPT7938,是单片 CMOS、12 位、40 MSPS、模数器件
- 主板usb3.0 19pin转接(贴片)
- 云连接 ZigBee 物联网恒温器演示板
- 使用 Diodes Incorporated 的 ZR78L12 的参考设计