STM32启动过程解析-2.02固件库启动文件分析

发布者:温柔阳光最新更新时间:2021-08-04 来源: eefocus关键字:STM32  启动过程  固件库  启动文件 手机看文章 扫描二维码
随时随地手机看文章

启动过程也许平时开发的时候不用太多关注,但是了解一下有助于我们加深对芯片工作过程的理解。


相对于ARM上一代的主流ARM7/ARM9内核架构,新一代Cortex内核架构的启动方式有了比较大的变化。ARM7/ARM9内核的控制器在复位后,CPU会从存储空间的绝对地址0x000000取出第一条指令执行复位中断服务程序的方式启动,即固定了复位后的起始地址为0x000000(PC = 0x000000)同时中断向量表的位置并不是固定的。而Cortex-M3内核则正好相反,有3种情况:
1、 通过boot引脚设置可以将中断向量表定位于SRAM区,即起始地址为0x2000000,同时复位后PC指针位于0x2000000处;
2、 通过boot引脚设置可以将中断向量表定位于FLASH区,即起始地址为0x8000000,同时复位后PC指针位于0x8000000处;
3、 通过boot引脚设置可以将中断向量表定位于内置Bootloader区,本文不对这种情况做论述;
而Cortex-M3内核规定,起始地址必须存放堆顶指针,而第二个地址则必须存放复位中断入口向量地址,这样在Cortex-M3内核复位后,会自动从起始地址的下一个32位空间取出复位中断入口向量,跳转执行复位中断服务程序。对比ARM7/ARM9内核,Cortex-M3内核则是固定了中断向量表的位置而起始地址是可变化的。
有了上述准备只是后,下面以STM32的2.02固件库提供的启动文件“stm32f10x_vector.s”为模板,对STM32的启动过程做一个简要而全面的解析。

程序清单一:
文件“stm32f10x_vector.s”,其中注释为行号


DATA_IN_ExtSRAM EQU 0 ;1

Stack_Size EQU 0x00000400 ;2

AREA STACK, NOINIT, READWRITE, ALIGN = 3 ;3

Stack_Mem SPACE Stack_Size ;4

__initial_sp ;5

Heap_Size EQU 0x00000400 ;6

AREA HEAP, NOINIT, READWRITE, ALIGN = 3 ;7

__heap_base ;8

Heap_Mem SPACE Heap_Size ;9

__heap_limit ;10

THUMB ;11

PRESERVE8 ;12

IMPORT NMIException ;13

IMPORT HardFaultException ;14

IMPORT MemManageException ;15

IMPORT BusFaultException ;16

IMPORT UsageFaultException ;17

IMPORT SVCHandler ;18

IMPORT DebugMonitor ;19

IMPORT PendSVC ;20

IMPORT SysTickHandler ;21

IMPORT WWDG_IRQHandler ;22

IMPORT PVD_IRQHandler ;23

IMPORT TAMPER_IRQHandler ;24

IMPORT RTC_IRQHandler ;25

IMPORT FLASH_IRQHandler ;26

IMPORT RCC_IRQHandler ;27

IMPORT EXTI0_IRQHandler ;28

IMPORT EXTI1_IRQHandler ;29

IMPORT EXTI2_IRQHandler ;30

IMPORT EXTI3_IRQHandler ;31

IMPORT EXTI4_IRQHandler ;32

IMPORT DMA1_Channel1_IRQHandler ;33

IMPORT DMA1_Channel2_IRQHandler ;34

IMPORT DMA1_Channel3_IRQHandler ;35

IMPORT DMA1_Channel4_IRQHandler ;36

IMPORT DMA1_Channel5_IRQHandler ;37

IMPORT DMA1_Channel6_IRQHandler ;38

IMPORT DMA1_Channel7_IRQHandler ;39

IMPORT ADC1_2_IRQHandler ;40

IMPORT USB_HP_CAN_TX_IRQHandler ;41

IMPORT USB_LP_CAN_RX0_IRQHandler ;42

IMPORT CAN_RX1_IRQHandler ;43

IMPORT CAN_SCE_IRQHandler ;44

IMPORT EXTI9_5_IRQHandler ;45

IMPORT TIM1_BRK_IRQHandler ;46

IMPORT TIM1_UP_IRQHandler ;47

IMPORT TIM1_TRG_COM_IRQHandler ;48

IMPORT TIM1_CC_IRQHandler ;49

IMPORT TIM2_IRQHandler ;50

IMPORT TIM3_IRQHandler ;51

IMPORT TIM4_IRQHandler ;52

IMPORT I2C1_EV_IRQHandler ;53

IMPORT I2C1_ER_IRQHandler ;54

IMPORT I2C2_EV_IRQHandler ;55

IMPORT I2C2_ER_IRQHandler ;56

IMPORT SPI1_IRQHandler ;57

IMPORT SPI2_IRQHandler ;58

IMPORT USART1_IRQHandler ;59

IMPORT USART2_IRQHandler ;60

IMPORT USART3_IRQHandler ;61

IMPORT EXTI15_10_IRQHandler ;62

IMPORT RTCAlarm_IRQHandler ;63

IMPORT USBWakeUp_IRQHandler ;64

IMPORT TIM8_BRK_IRQHandler ;65

IMPORT TIM8_UP_IRQHandler ;66

IMPORT TIM8_TRG_COM_IRQHandler ;67

IMPORT TIM8_CC_IRQHandler ;68

IMPORT ADC3_IRQHandler ;69

IMPORT FSMC_IRQHandler ;70

IMPORT SDIO_IRQHandler ;71

IMPORT TIM5_IRQHandler ;72

IMPORT SPI3_IRQHandler ;73

IMPORT UART4_IRQHandler ;74

IMPORT UART5_IRQHandler ;75

IMPORT TIM6_IRQHandler ;76

IMPORT TIM7_IRQHandler ;77

IMPORT DMA2_Channel1_IRQHandler ;78

IMPORT DMA2_Channel2_IRQHandler ;79

IMPORT DMA2_Channel3_IRQHandler ;80

IMPORT DMA2_Channel4_5_IRQHandler ;81

AREA RESET, DATA, READONLY ;82

EXPORT __Vectors ;83

__Vectors ;84

DCD __initial_sp ;85

DCD Reset_Handler ;86

DCD NMIException ;87

DCD HardFaultException ;88

DCD MemManageException ;89

DCD BusFaultException ;90

DCD UsageFaultException ;91

DCD 0 ;92

DCD 0 ;93

DCD 0 ;94

DCD 0 ;95

DCD SVCHandler ;96

DCD DebugMonitor ;97

DCD 0 ;98

DCD PendSVC ;99

DCD SysTickHandler ;100

DCD WWDG_IRQHandler ;101

DCD PVD_IRQHandler ;102

DCD TAMPER_IRQHandler ;103

DCD RTC_IRQHandler ;104

DCD FLASH_IRQHandler ;105

DCD RCC_IRQHandler ;106

DCD EXTI0_IRQHandler ;107

DCD EXTI1_IRQHandler ;108

DCD EXTI2_IRQHandler ;109

DCD EXTI3_IRQHandler ;110

DCD EXTI4_IRQHandler ;111

DCD DMA1_Channel1_IRQHandler ;112

DCD DMA1_Channel2_IRQHandler ;113

DCD DMA1_Channel3_IRQHandler ;114

DCD DMA1_Channel4_IRQHandler ;115

DCD DMA1_Channel5_IRQHandler ;116

DCD DMA1_Channel6_IRQHandler ;117

DCD DMA1_Channel7_IRQHandler ;118

DCD ADC1_2_IRQHandler ;119

DCD USB_HP_CAN_TX_IRQHandler ;120

DCD USB_LP_CAN_RX0_IRQHandler ;121

DCD CAN_RX1_IRQHandler ;122

DCD CAN_SCE_IRQHandler ;123

DCD EXTI9_5_IRQHandler ;124

DCD TIM1_BRK_IRQHandler ;125

DCD TIM1_UP_IRQHandler ;126

DCD TIM1_TRG_COM_IRQHandler ;127

DCD TIM1_CC_IRQHandler ;128

DCD TIM2_IRQHandler ;129

DCD TIM3_IRQHandler ;130

DCD TIM4_IRQHandler ;131

DCD I2C1_EV_IRQHandler ;132

DCD I2C1_ER_IRQHandler ;133

DCD I2C2_EV_IRQHandler ;134

DCD I2C2_ER_IRQHandler ;135

DCD SPI1_IRQHandler ;136

DCD SPI2_IRQHandler ;137

DCD USART1_IRQHandler ;138

DCD USART2_IRQHandler ;139

DCD USART3_IRQHandler ;140

DCD EXTI15_10_IRQHandler ;141

DCD RTCAlarm_IRQHandler ;142

DCD USBWakeUp_IRQHandler ;143

DCD TIM8_BRK_IRQHandler ;144

DCD TIM8_UP_IRQHandler ;145

DCD TIM8_TRG_COM_IRQHandler ;146

DCD TIM8_CC_IRQHandler ;147

DCD ADC3_IRQHandler ;148

DCD FSMC_IRQHandler ;149

DCD SDIO_IRQHandler ;150

DCD TIM5_IRQHandler ;151

DCD SPI3_IRQHandler ;152

DCD UART4_IRQHandler ;153

DCD UART5_IRQHandler ;154

DCD TIM6_IRQHandler ;155

DCD TIM7_IRQHandler ;156

DCD DMA2_Channel1_IRQHandler ;157

DCD DMA2_Channel2_IRQHandler ;158

DCD DMA2_Channel3_IRQHandler ;159

DCD DMA2_Channel4_5_IRQHandler ;160

AREA |.text|, CODE, READONLY ;161

Reset_Handler PROC ;162

EXPORT Reset_Handler ;163

IF DATA_IN_ExtSRAM == 1 ;164

LDR R0,= 0x00000114 ;165

LDR R1,= 0x40021014 ;166

STR R0,[R1] ;167

LDR R0,= 0x000001E0 ;168

LDR R1,= 0x40021018 ;169

STR R0,[R1] ;170

LDR R0,= 0x44BB44BB ;171

LDR R1,= 0x40011400 ;172

STR R0,[R1] ;173

LDR R0,= 0xBBBBBBBB ;174

LDR R1,= 0x40011404 ;175

STR R0,[R1] ;176

LDR R0,= 0xB44444BB ;177

LDR R1,= 0x40011800 ;178

STR R0,[R1] ;179

LDR R0,= 0xBBBBBBBB ;180

LDR R1,= 0x40011804 ;181

STR R0,[R1] ;182

LDR R0,= 0x44BBBBBB ;183

LDR R1,= 0x40011C00 ;184

STR R0,[R1] ;185

LDR R0,= 0xBBBB4444 ;186

LDR R1,= 0x40011C04 ;187

STR R0,[R1] ;188

LDR R0,= 0x44BBBBBB ;189

LDR R1,= 0x40012000 ;190

STR R0,[R1] ;191

LDR R0,= 0x44444B44 ;192

LDR R1,= 0x40012004 ;193

STR R0,[R1] ;194

LDR R0,= 0x00001011 ;195

LDR R1,= 0xA0000010 ;196

STR R0,[R1] ;197

LDR R0,= 0x00000200 ;198

LDR R1,= 0xA0000014 ;199

STR R0,[R1] ;200

ENDIF ;201

IMPORT __main ;202

LDR R0, =__main ;203

BX R0 ;204

ENDP ;205

ALIGN ;206

IF :DEF:__MICROLIB ;207

EXPORT __initial_sp ;208

EXPORT __heap_base ;209

EXPORT __heap_limit ;210

ELSE ;211

IMPORT __use_two_region_memory ;212

EXPORT __user_initial_stackheap ;213

__user_initial_stackheap ;214

LDR R0, = Heap_Mem ;215

LDR R1, = (Stack_Mem + Stack_Size) ;216

LDR R2, = (Heap_Mem + Heap_Size) ;217

LDR R3, = Stack_Mem ;218

BX LR ;219

ALIGN ;220

ENDIF ;221

END ;222

ENDIF ;223

END ;224


-----------------------------------------------------------------------------------------------------------------------------------------------------------------

如程序清单一,STM32的启动代码一共224行,使用了汇编语言编写,这其中的主要原因下文将会给出交代。现在从第一行开始分析:
第1行:定义是否使用外部SRAM,为1则使用,为0则表示不使用。此语行若用C语言表达则等价于:
#define DATA_IN_ExtSRAM 0
第2行:定义栈空间大小为0x00000400个字节,即1Kbyte。此语行亦等价于:
#define Stack_Size 0x00000400
第3行:伪指令AREA,表示
第4行:开辟一段大小为Stack_Size的内存空间作为栈。
第5行:标号__initial_sp,表示栈空间顶地址。
第6行:定义堆空间大小为0x00000400个字节,也为1Kbyte。
第7行:伪指令AREA,表示
第8行:标号__heap_base,表示堆空间起始地址。
第9行:开辟一段大小为Heap_Size的内存空间作为堆。
第10行:标号__heap_limit,表示堆空间结束地址。
第11行:告诉编译器使用THUMB指令集。
第12行:告诉编译器以8字节对齐。
第13—81行:IMPORT指令,指示后续符号是在外部文件定义的(类似C语言中的全局变量声明),而下文可能会使用到这些符号。
第82行:定义只读数据段,实际上是在CODE区(假设STM32从FLASH启动,则此中断向量表起始地址即为0x8000000)
第83行:将标号__Vectors声明为全局标号,这样外部文件就可以使用这个标号。
第84行:标号__Vectors,表示中断向量表入口地址。
第85—160行:建立中断向量表。
第161行:
第162行:复位中断服务程序,PROC…ENDP结构表示程序的开始和结束。
第163行:声明复位中断向量Reset_Handler为全局属性,这样外部文件就可以调用此复位中断服务。
第164行:IF…ENDIF为预编译结构,判断是否使用外部SRAM,在第1行中已定义为“不使用”。
第165—201行:此部分代码的作用是设置FSMC总线以支持SRAM,因不使用外部SRAM因此此部分代码不会被编译。
第202行:声明__main标号。
第203—204行:跳转__main地址执行。
第207行:IF…ELSE…ENDIF结构,判断是否使用DEF:__MICROLIB(此处为不使用)。
第208—210行:若使用DEF:__MICROLIB,则将__initial_sp,__heap_base,__heap_limit亦即栈顶地址,堆始末地址赋予全局属性,使外部程序可以使用。
第212行:定义全局标号__use_two_region_memory。
第213行:声明全局标号__user_initial_stackheap,这样外程序也可调用此标号。
第214行:标号__user_initial_stackheap,表示用户堆栈初始化程序入口。
第215—218行:分别保存栈顶指针和栈大小,堆始地址和堆大小至R0,R1,R2,R3寄存器
第224行:程序完毕。
以上便是STM32的启动代码的完整解析,接下来对几个小地方做解释:
1、 AREA指令:伪指令,用于定义代码段或数据段,后跟属性标号。其中比较重要的一个标号为“READONLY”或者“READWRITE”,其中“READONLY”表示该段为只读属性,联系到STM32的内部存储介质,可知具有只读属性的段保存于FLASH区,即0x8000000地址后。而“READONLY”表示该段为“可读写”属性,可知“可读写”段保存于SRAM区,即0x2000000地址后。由此可以从第3、7行代码知道,堆栈段位于SRAM空间。从第82行可知,中断向量表放置与FLASH区,而这也是整片启动代码中最先被放进FLASH区的数据。因此可以得到一条重要的信息:0x8000000地址存放的是栈顶地址__initial_sp,0x8000004地址存放的是复位中断向量Reset_Handler(STM32使用32位总线,因此存储空间为4字节对齐)。
2、 DCD指令:作用是开辟一段空间,其意义等价于C语言中的地址符“&”。因此从第84行开始建立的中断向量表则类似于使用C语言定义了一个指针数组,其每一个成员都是一个函数指针,分别指向各个中断服务函数。
3、 标号:前文多处使用了“标号”一词。标号主要用于表示一片内存空间的某个位置,等价于C语言中的“地址”概念。地址仅仅表示存储空间的一个位置,从C语言的角度来看,变量的地址,数组的地址或是函数的入口地址在本质上并无区别。
4、 第202行中的__main标号并不表示C程序中的main函数入口地址,因此第204行也并不是跳转至main函数开始执行C程序。__main标号表示C/C++标准实时库函数里的一个初始化子程序__main的入口地址。该程序的一个主要作用是初始化堆栈(对于程序清单一来说则是跳转__user_initial_stackheap标号进行初始化堆栈的),并初始化映像文件,最后跳转C程序中的main函数。这就解释了为何所有的C程序必须有一个main函数作为程序的起点——因为这是由C/C++标准实时库所规定的——并且不能更改,因为C/C++标准实时库并不对外界开发源代码。因此,实际上在用户可见的前提下,程序在第204行后就跳转至.c文件中的main函数,开始执行C程序了。
至此可以总结一下STM32的启动文件和启动过程。首先对栈和堆的大小进行定义,并在代码区的起始处建立中断向量表,其第一个表项是栈顶地址,第二个表项是复位中断服务入口地址。然后在复位中断服务程序中跳转??C/C++标准实时库的__main函数,完成用户堆栈等的初始化后,跳转.c文件中的main函数开始执行C程序。假设STM32被设置为从内部FLASH启动(这也是最常见的一种情况),中断向量表起始地位为0x8000000,则栈顶地址存放于0x8000000处,而复位中断服务入口地址存放于0x8000004处。当STM32遇到复位信号后,则从0x80000004处取出复位中断服务入口地址,继而执行复位中断服务程序,然后跳转__main函数,最后进入mian函数,来到C的世界。

 


关键字:STM32  启动过程  固件库  启动文件 引用地址:STM32启动过程解析-2.02固件库启动文件分析

上一篇:STM32外设使用要点
下一篇:STM32中DMA的使用入门

推荐阅读最新更新时间:2024-11-04 10:34

STM32_BKP备份数据
今天提供并讲解的软件工程,基于前面的软件工程“TIM延时”修改而来。若有疑问,请关注微信公众号获取更多信息。 每天提供下载的“软件工程”都是在硬件板子上进行多次测试、并保证没问题才上传至360云盘。 今天的软件工程下载地址(360云盘): https://yunpan.cn/cP7FTUw4XCYNw 访问密码 0ebe STM32F10x的资料可以在我360云盘下载: https://yunpan.cn/crBUdUGdYKam2 访问密码 ca90 工程概要说明:第一次上电写入BKP一个数据0xA55A,第二次及以后MCU重新上电读取BKP数据就是0xA55A(只要中间没有修改过),软件工程是在每次上电
[单片机]
STM32_BKP备份数据
STM32高级定时器-PWM简单使用
高级定时器与通用定时器比较类似,下面是一个TIM1 的PWM 程序,TIM1是STM32唯一的高级定时器。共有4个通道有死区有互补。 先是配置IO脚: GPIO_InitTypeDef GPIO_InitStructure; GPIO_InitStructure.GPIO_Pin = GPIO_Pin_8; GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz; GPIO_Init(GPIOA, &GPIO_InitStructure);
[单片机]
<font color='red'>STM32</font>高级定时器-PWM简单使用
stm32 定时器5输入捕获
timer.h #ifndef _TIM5SANP_H #define _TIM5SANP_H #include sys.h void TIM14_PWM_Init(u32 arr,u32 psc); void TIM5_CH1_Cap_Init(u32 arr,u16 psc); #endif timer.c #include timer.h TIM_ICInitTypeDef TIM5_ICInitStructre; void TIM5_CH1_Cap_Init(u32 arr,u16 psc) { GPIO_InitTypeDef GPIO_InitStructure; TIM_TimeBaseInitTypeD
[单片机]
STM32 AD7792驱动调试总结
调了好久,终于通了。。为什么用了一周时间这么久?主要原因是我不知道隔离模块有问题,导致一直是盲目的改代码,今天没办法,直接把隔离模块短路,一下子就读出了ID号。 7792挂在SPI2上,PB12,PB13,PB14,PB15,可我用SPI调的时候一直读出来是0XFF,以为是SPI2有问题,于是我直接抛弃SPI,用时序直接读。很好用!!! 下面是我的代码: #define SCLOCK1 GPIO_SetBits(GPIOB,GPIO_Pin_13); #define SCLOCK0 GPIO_ResetBits(GPIOB,GPIO_Pin_13); #define CS1 GPIO_SetBits(GPIOB,G
[单片机]
STM32学习——高级定时器
高级定时器简介 1.输入捕获模式,可用来测频率或脉宽(原理:捕获到信号的跳变沿的时候,把计数器CNT的值锁存到捕获寄存器CCR中,把前后两次捕获到的CCR寄存器中的值相减,就可以算出脉宽或者频率。如果捕获的脉宽的时间长度超过你的捕获定时器的周期,就会发生溢出,需要进行额外的处理) 2.输出比较应用,主要应用为PWM输出 配置PWM输出,代码实现 (1)高级定时器TIM1的工作方式配置以及初始化 1.时基结构体TIM_TimeBaseInitTypeDef,配置预分频PSC,计数方式,定时器周期ARR,时钟分频(与死区时间相关),重复计数器(用不上) 2.输出比较结构体TIM_OCInitTypeDef,配置比较输出模式(P
[单片机]
<font color='red'>STM32</font>学习——高级定时器
STM32滴答定时器(Systick)详细详细解析
在ARM Cortex-M3内核中有一个Systick定时器,它是一个24位的倒计数定时器,当计数到0时,它就会从Load寄存器中自动重装定时初值,只要不把CTRL寄存器中的ENABLE清0,它就永不停。对于滴答定时器的理解主要分为下面几项: 1.滴答定时器的时钟来源 看上面的图会有一个错觉,以为滴答定时器是系统时钟的1/8,其实不是,滴答定时器的时钟既可以是HCLK/8,也可以是HCLK,这个是通过CTRL寄存器进行设定的,了解这一点,对于操作系统的时钟计算很重要,因为要精确计算时钟时间。 2.滴答定时器的寄存器 从这里就能看出,时钟源有两种选择 3.滴答定时器的库函数 (1)寄存器定义在哪?————在core
[单片机]
十五年创新路:意法半导体举办首届STM32中国线上技术周
2022年是意法半导体STM32家族问世15周年。在全球疫情阻止人们面对面沟通交流的当下,7月18-22日,意法半导体举办首届暨2022年STM32中国线上技术周,庆祝与生态合作伙伴共同创新的十五载。 在这个为期五天的线上活动中,意法半导体总裁兼首席执行官Jean-Marc Chery、意法半导体执行副总裁、通用微控制器子产品部总经理Ricardo De Sa Earp、意法半导体执行副总裁、中国区市场营销负责人曹志平(Henry Cao) 将分别作主题演讲。同时,意法半导体和合作伙伴带来30多场在线研讨会、100多个展品视频演示。在在线研讨会后设有技术问答环节,参观者将有机会与我们的专家和工程师进行现场互动。 下面,
[单片机]
十五年创新路:意法半导体举办首届<font color='red'>STM32</font>中国线上技术周
stm32若干技巧
技巧1:关于串口接收 对于串口数据帧到检测,对于串口接收有判定帧头、尾 FIFO缓存等方式,推荐采用超时判断来确定一帧数据接收完成,尤其对于处理GPS,3G模块数据效,比判断帧头、尾效果好的多。参考网友模式 //检测超时函数 供定时器中断调用-1ms一次 // t为超时时间 __inline void Chk_TimeOut(u8 t) { if(!uartRMsg.rcOK && (uartRMsg.rcIndex =8) && (++uartRMsg.rcS =t) ) //超时之后,开始重新解码 uartRMsg.rcOK = true; } //接收函数, 供USART中断调用 __inline void Recie
[单片机]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved