tiny4412 裸机程序 八、重定位到DRAM及LCD实验

发布者:colchery最新更新时间:2021-12-13 来源: eefocus关键字:tiny4412  裸机程序  重定位  DRAM  LCD实验 手机看文章 扫描二维码
随时随地手机看文章

一、实验原理

上一章已经解释的很清楚了,如何将所要运行的user_bin程序定位到DRAM中,这一章要进行重定位到DRAM后运行LCD程序,实际上一章中BL2中程序可以不用改动,直接重写我们的USER目录下的程序即可,将USER目录下的LED灯闪烁程序用LCD程序替换就行,最后编译出的程序名字也叫user_bin.bin即可,这样也可以用上一章中的fast_fuse.sh进行烧写到SD卡运行。


1、LCD控制器

Exynos4412的LCD控制器可以通过编程支持不同LCD屏的要求,例如行和列像素数,数据总线宽度,接口时序和刷新频率等。LCD控制器的主要作用,是将定位在系统存储器中的显示缓冲区中的LCD图像数据传送到外部LCD驱动器,并产生必要的控制信号,例如RGB_VSYNC,RGB_HSYNC, RGB_VCLK等。

 


图8-1、Exynos4412 LCD控制器框图


如上图8-1所示,在Exynos4412规格书中截图,LCD控制器的构成主要由VSFR,VDMA,VPRCS , VTIME和视频时钟产生器几个模块组成:

(1)、VSFR由121个可编程控制器组,一套gammaLUT寄存器组(包括64个寄存器),一套i80命令寄存器组(包括12个寄存器)和5块256*32调色板存储器组成,主要用于对lcd控制器进行配置。

(2)、VDMA是LCD专用的DMA传输通道,可以自动从系统总线上获取视频数据传送到VPRCS,无需CPU干涉。

(3)、VPRCS收到数据后组成特定的格式(如16bpp或24bpp),然后通过数据接口(RGB_VD, VEN_VD, V656_VD or SYS_VD)传送到外部LCD屏上。

(4)、VTIME模块由可编程逻辑组成,负责不同lcd驱动器的接口时序控制需求。VTIME模块产生 RGB_VSYNC, RGB_HSYNC, RGB_VCLK, RGB_VDEN,VEN_VSYNC等信号。


Exynos4412的LCD主要特性:

(1)、支持4种接口类型:RGB/i80/ITU601(656)/YTU444

(2)、支持单色、4级灰度、16级灰度、256色的调色板显示模式

(3)、支持64K和16M色非调色板显示模式

(4)、支持多种规格和分辨率的LCD

(5)、虚拟屏幕最大可达16MB

(6)、5个256*32位调色板内存

(7)、支持透明叠加


2、接口信号

LCD的FIMD显示控制器全部信号定义如下表8-1所示

表8-1、LCD接口信号表

Signal

I/O

Description

LCD Type

LCD_HSYNC

O

水平同步信号

 

 

RGB I/F

LCD_VSYNC

O

垂直同步信号

LCD_VDEN

O

数据使能

LCD_VCLK

O

视频时钟

LCD_VD[23:0]

O

LCD像素数据输出

SYS_OE

O

输出使能

VSYNC_LDI

O

Indirect i80接口,垂直同步信号

 

 

 

i80 I/F

SYS_CS0

O

Indirect i80接口,片选LCD0

SYS_CS1

O

Indirect i80接口,片选LCD1

SYS_RS

O

Indirect i80接口,寄存器选择信号

SYS_WE

O

Indirect i80接口,写使能信号

SYS_VD[23:0]

IO

Indirect i80接口,视频数据输入输出

SYS_OE

O

Indirect i80接口,输出使能信号

VEN_HSYNC

O

601接口水平同步信号

 

 

 

ITU 601/656 I/F

VEN_VSYNC

O

601接口垂直同步信号

VEN_HREF

O

601接口数据使能

V601_CLK

O

601接口数据时钟

VEN_DATA[7:0]

O

601接口YUV422格式数据输出

V656_DATA[7:0]

O

656接口YUV422格式数据输出

V656_CLK

O

656接口数据时钟

VEN_FIELD

O

601接口域信号

 

其中主要的RGB接口信号:

(1)、LCD_HSYNC:行同步信号,表示一行数据的开始,LCD控制器在整个水平线(整行)数据移入LCD驱动器后,插入一个LCD_HSYNC信号;

(2)、LCD_VSYNC: 帧同步信号,表示一帧数据的开始,LCD控制器在一个完整帧显示完成后立即插入一个LCD_VSYNC信号,开始新一帧的显示;VSYNC信号出现的频率表示一秒钟内能显示多少帧图像,称为“显示器的频率”

(3)、LCD_VCLK:像素时钟信号,表示正在传输一个像素的数据;

(4)、LCD_VDEN:数据使能信号;

(5)、 LCD_VD[23:0]: LCD像素数据输出端口


3、RGB信号的时序

如下图8-2是LCD的RGB接口工作时序图,图中各时钟延时参数的含义如下,这些配置可以在所使用的LCD规格书中查取:


(1)、相关参数说明

VBPD(vertical back porch):表示在一帧图像开始时,垂直同步信号以后的无效的行数。

VFBD(vertical front porch):表示在一帧图像结束后,垂直同步信号以前的无效的行数。VSPW(vertical sync pulse width):表示垂直同步脉冲的宽度,用行数计算。

HBPD(horizontal back porch):表示从水平同步信号开始到一行的有效数据开始之间的VCLK的个数。

HFPD(horizontal front porth):表示一行的有效数据结束到下一个水平同步信号开始之间的VCLK的个数。

HSPW(horizontal sync pulse width):表示水平同步信号的宽度,用VCLK计算。


(2)、帧的传输过程

VSYNC信号有效时,表示一帧数据的开始,信号宽度为(VSPW +1)个HSYNC信号周期,即(VSPW +1)个无效行;

VSYNC信号脉冲之后,总共还要经过(VBPD+ 1)个HSYNC信号周期,有效的行数据才出现; 所以,在VSYNC信号有效之后,还要经过(VSPW +1  + VBPD + 1)个无效的行;

随即发出(LINEVAL+ 1)行的有效数据;

最后是(VFPD + 1)个无效的行。


(3)、行中像素数据的传输过程

HSYNC信号有效时,表示一行数据的开始,信号宽度为(HSPW+ 1)个VCLK信号周期,即(HSPW +1)个无效像素;

HSYNC信号脉冲之后,还要经过(HBPD +1)个VCLK信号周期,有效的像素数据才出现;

随后发出(HOZVAL+1)个像素的有效数据;

最后是(HFPD +1)个无效的像素。


(4)、将VSYNC、HSYNC、VCLK等信号的时间参数设置好之后,并将帧内存的地址告诉LCD控制器,它即可自动地发起DMA传输从帧内存中得到图像数据,最终在上述信号的控制下RGB数据出现在数据总线VD[23:0]上。用户只需要把要显示的图像数据写入帧内存中。


其实现实的图像有像素点组成行、行组成场、场组成动画、动画叠加也就是3D的出现,也就是我们所说的“点动成线、线动成面、面动成体”。



图8-2、LCD的RGB工作时序图


4、LCD的硬件接口



图8-3、LCD的部分硬件电路图


5、16M(24BPP)色的显示模式

由于我的Tiny4412所用屏幕是S07,是24bit(A888)显示模式,即用24位的数据来表示一个像素的颜色,每种颜色使用8位。 LCD控制器从内存中获得某个像素的24为颜色值后,直接通过VD[23:0]数据线发送给LCD;在内存中,使用4个字节(32位)来表示一个像素,其中的3个字节从高到低分别表示红、绿、蓝,剩余的1个字节无效;

以上内容是我从以前调试uboot中LCD显示查阅到的资料整合,其主要来自于网络,网络上还有各种介绍LCD的相交资料,有兴趣的朋友可以自己深究,也可以参考我即将整理的UBOOT相关文档。


二、程序说明

下面对程序进行简要说明,这时我只对USER目录下的程序实现过程进行必要说明,其他相关细节,请自行对照手册来分析程序,这一章的程序我也进行必要的注释,

首先来看一下Makefile和sdram.lds start.S几个文件


1、USER/Makefile sdram.lds start.S

上面三个程序的说明请参考上一章,其主要作用就是将user_bin.bin中的而start.s链接地址设置为0X43E00000让程序重定们DRAM中时,就执行这个程序,而start.s唯一做的事就是跳转到main.c中的main函数执行。


2、USER/main.c

Mian函数很清楚,一开始调用lcd_init();然后调用lcd_clear_screen(0x000000)清屏,接着画一个十字,再画了几条水平线和一条垂直线,最后让LDE灯一直闪烁。


3、USER/LCD.C

首先需要说明的一点时,这个程序我参考了网上很多人关于S5PV210的写法,但或多或少总存在一些问题,最后在FriendlyARM的BBS的论坛上一个ID号为“赵远远”提供的lcd_chinese_char程序,这个程序初始化流程可以很好的工作。所以,这个程序里的初始化部分主要取自于此!


lcd_init()

3.1、寄存器设置方法

如下面两句话所示:

#define LCDBLK_CFG (*(volatile unsigned int *)0x10010210)

LCDBLK_CFG = a;

语句中0x10010210是寄存器LCDBLK_CFG的地址,(volatileunsigned int *)0x10010210是将此0x10010210值强制转换成一个指向unsigned int的指针,volatile作用是防止编译器优化,再在外面加一个*就是取0x10010210地址处的值了,所以用LCDBLK_CFG就可改写0x10010210处的数据,

下面来按着LCD的初始化顺序进行说明。


3.2、定义IO引脚功能为RGB接口。

由上图8-3所示,所用的GPIO口分别是GPIO的F口的0/1/2/3四组,查看手册可知要想将其设置为LCD的RGB接口,只需要将其设置为2即可。同时将其IO口设置成为内部上拉,且将其驱动能力设置为最强代码如下:

GPF0CON = 0x22222222;                                    

GPF1CON = 0x22222222;

GPF2CON = 0x22222222;

GPF3CON = 0x00222222;

// Set pull-up,down disable

GPF0PUD = 0x0000FFFF;

GPF1PUD = 0x0000FFFF;

GPF2PUD = 0x0000FFFF;

GPF3PUD = 0x00000FFF;

 

//MAX drive strength---------//

GPF0DRV = 0x0000FFFF;

GPF1DRV = 0x0000FFFF;

GPF2DRV = 0x0000FFFF;

GPF3DRV = 0x00000FFF;

3.3、接着设置LCD相关时钟寄存器

这一步主要设置选择LCD时钟输入源为MPLL,且不对其进行分频,同时设置LCDBLK_CFG使其使用FIMD接口,且设置LCDBLK_CFG2使其PWM输出使能,其实,LCDBLK_CFG2可以不用设置。


3.4、清除Fram Buffer处的数据

这里调用一个Memset()函数,对地址0x54000000处,0X200000大小的DRAM进行初始化为统一值,一开始我设置为,后来为了调试,我将其设置为0xff00,即可以显示为绿色。


3.5、设置VIDCONx,设置接口类型,时钟分频,极性以及使能LCD控制器等

A、VIDCON0参考数据手册,这一个寄存器主要设置接口类型和时钟分频,这里仅仅设置了其时钟分频值。参考S07的手册,找到时像素时钟。由于我们的MPLL为800MHZ,所以这里设置值,根据手册进行计算,要得到33.3MHZ左右的像素时钟,所以寄存器第6~13bit设置为23.其他都保持为0即可。


代码如下:

VIDCON0 = (23 << 6);

此代码中也给出了如下代码风格的写法,后面很多寄存器配置我也均写好相类似风格的代码,但我要遗憾的说一声,这种风格的写法且总不能执行成功,LCD像是初始化成功,但且不能将图形给画出,这在此比对代码比对了很久,也没有找出原由来,所以这里代码中可运行的部分是受高手唾弃的一种写作风格,同时也给出了另一种写作风格的代码,希望细心的网友能发现其中那里我设置有差别,而让后一种风格的代码能正常运行。

// #define EXYNOS_VIDCON0_CLKVAL_F(x)                       (((x) & 0xff) << 6)

//VIDCON0 = EXYNOS_VIDCON0_CLKVAL_F(23);  //not use this method ,it does not work???

B、VIDCON1主要设置像表时钟信号一直存在,且高电平有效,而IHSYNC=1,极性反转IVSYNC=1,极性反转,这是由于S07的时序图中VSYNC和HSYNC都是低脉冲有效,而Exynos4412芯片手册时序图,如上图8-2所示:VSYNC和HSYNC都是高脉冲有效,所以需要反转。

C、VIDTCONx用来设置时序和长宽等参数,这里就主要设置VBPD(vertical back porch)、 VFBD(vertical frontporch)、VSPW(vertical sync pulse width)、HBPD(horizontal backporch)、 HFPD(horizontal sync pulse width)等参数,参数的意义前面已有简要说明,这里简单用图片的方式说明如何取值。

如下图8.4所示是VIDTCON0取值过程,VIDTCON0设置帧同步时序。



图8-4、VIDTCON0寄存器取值参考图

VBPDE与RGB接口无关,不用关心,所以其代码设置如下:

VIDTCON0 = (22 << 16) | (21 << 8) | (0);

如下图8.5所示是VIDTCON1取值过程,VIDTCON1设置像素同步时序。



图8-5、VIDTCON1寄存器取值参考图

VFPDE与RGB接口无关,不用关心,所以其代码设置如下:

VIDTCON1 = (45 << 16) | (209 << 8) | (0);

如下图8-6所示,为寄存器VIDTCON2设置取值要点:

图8-6、VIDTCON2寄存器取值参考图

VIDTCON2 = (479 << 11) | 799;

D、设置WINCON0寄存器,即设置数据格式。

Exynos4412的LCD控制器有overlay功能,它支持5个window。这里只使用window0,设置其代码RGB模式为24bit(A888)且使能window0,其相关的代码设置如下:

WINCON0 = (11 << 2) | 1;

E、设置VID0SD0A/B/C,即设置Window0的坐标系。

相关代码如下:

VIDOSD0A = 0;

VIDOSD0B = (799 << 11) | 479;

VIDOSD0C = 480 * 800;

F、配置VIDW00ADD0B0和VIDW00ADD1B0,设置framebuffer的地址;

相关代码如下:

VIDW00ADD0B0 = LCD_VIDEO_ADDR;

VIDW00ADD1B0 = LCD_VIDEO_ADDR + VIDOSD0C * 4;

G、配置SHADOWCON和WINCHMAP2、选择使能DMA通道0。由于我们使用的是Window0,所以需要使能DMA通道0;

相关代码如下:

SHADOWCON |= 1;

 

WINCHMAP2 &= ~(7 << 16);

WINCHMAP2 |= 1 << 16;

WINCHMAP2 &= ~7;

WINCHMAP2 |= 1;

H、最后设置VIDCON0低两位使能LCD,代码如下:

VIDCON0 |= 3;

我们不需要使用很强大的功能,所有只需设置这几个寄存器即可。


lcd_draw_pixel()

经过lcd_init()初始化LCD控制器之后,我们就可以在LCD上描绘图形了,代码里的所有绘制图形的函数都是基于lcd_draw_pixel()这个函数,它的作用是在LCD上描绘一个点,通过描绘一个个的点最终会可以组成图形了。在LCD上描点的本质就是往Frame Buffer中写入颜色值而已。LCD控制器自己会去读所定义的Frame Buffer内存位置处读取数据,然后输出到LCD。

lcd_draw_pixel()这个函数以及后面几个画水平线、垂直线和十字的函数我完成COPY了《Linux平台下Mini210S裸机程序开发指南》里的代码,下面我们仅仅COPY说明一下此函数,其代码如下:

void lcd_draw_pixel(int row, int col, intcolor)

{

unsigned long * pixel = (unsigned long *)LCD_VIDEO_ADDR;

*(pixel + row * COL + col) = color;

}

其中LCD_VIDEO_ADDR = 0x54000000,即framebuffer的基地址,这个值只要是DRAM中,一块可分配16M大小的DRAM的一个地址即可。row和col用来决定偏移,color是颜色值,只要在framebuffer中对应的地址处写入颜色值就可以在LCD上描绘出该点。

后面其他函数很简单,这里就不费时间做过多说明。


三、完整的烧写过程

已将SD卡插入电脑,假设linux识别了SD卡,其识别号为sdb。执行下面命令:

# chmod 777 –R 7_sdram_LCD

# cd 7_sdram_LCD

# make

# ./ fast_fuse /dev/sdb


四、上电实验

将sd卡插入Tiny4412中,选择sd卡启动,和电脑能过串口0连接好,打开一个串口调试助手,然后上电,可以看到以下现象:

串口助手中会显示一些信息,LCD初始化完成后,LCD屏幕首先会显示一整幅的绿色背景。 一两秒钟后,会显示Mian()函数中所画的几条横线和一条竖线以及一个十字,板上的LED灯会一直闪烁。

 

前面说过,这一章中留有一点问题,就是两种写法,同样的设置,为什么第二种代码风格却不能运行,我自己用人眼对比了好多次,也没有发现代码那里有问题,没办法人眼排查,只能试着将串口重新初始化,然后打印出相关信息,找出原因吧。

关键字:tiny4412  裸机程序  重定位  DRAM  LCD实验 引用地址:tiny4412 裸机程序 八、重定位到DRAM及LCD实验

上一篇:4412裸机程序之mmu
下一篇:exynos 4412 时钟配置

推荐阅读最新更新时间:2024-11-08 10:11

三星考虑明年扩大DRAM产能,恐改变目前供给紧俏格局
  根据集邦咨询半导体研究中心( DRAM eXchange)调查,由于 DRAM 厂近两年来产能扩张幅度有限,加上制程转换的难度, DRAM 供给成长明显较往年放缓,配合着下半年终端市场消费旺季的推波助澜,DRAM合约价自2016年中开启涨价序幕。然而, 三星 传出在考虑提高竞争者进入门槛的情况下,可能将扩大DRAM产能,恐将改变DRAM供给紧俏格局。下面就随手机便携小编一起来了解一下相关内容吧。   DRAMeXchange研究协理吴雅婷指出,以主流标准型内存模组(DDR4 4GB)合约价为例,从去年中开始起涨,由当时的DDR4 4GB 13美元均价拉升至今年第四季合约价30.5美元,报价连续六个季度向上,合计涨幅超过130
[手机便携]
分析师称:关掉奇梦达是最好的办法
  半导体产业分析师呼吁英飞凌关闭奇梦达(英飞凌持有奇梦达多数股权),此举对于帮助英飞凌重振其余业务部门是必要的,同时也有助于改善整个产业DRAM供过于求的情况。   伦敦市场研究公司Future Horizons CEO Malcolm Penn称,由于市场供应过剩和严峻价格问题,英飞凌为其77.5%的奇梦达股份找到买家不是一件容易的事。   “任何一家公司购买奇梦达,绝对不是商业、市场、业务、技术或竞争的原因,”Penn称。“即使你支付别人钱,让他拥有奇梦达,这个受赠人只有疯了才会考虑。”   英飞凌希望在2009年第一季度能“显著地”将其在奇梦达的股份降到50%以下,尽管英飞凌的官员承认目前卖掉他们的股份很困难。  
[焦点新闻]
三星预计DRAM需求增长 2.2亿建美芯片生产线
  天极网4月15日消息 (他山石 编译) 当地时间本周五,韩国三星电子公司宣布,它计划投资2.2亿美元在美国德克萨斯州的奥斯汀建立新的半导体产品生产线。   三星电子公司是主要的NAND闪存芯片和DRAM储存芯片制造商,这些芯片通常用于计算机和储存卡。新的半导体生产线制造的产品将投放美国市场。   三星电子公司半导体部门副总裁Kim Il Ung在电话会议上表示,预期新的生产线将在2007年第三季度投产。但生产哪种芯片目前还没有确定,三星电子公司将根据今年年底的市场需求决定制造芯片的品种。   由于计算机制造商把更多的储存芯片用于新的系统,三星电子公司预期今年DRAM储存芯片的需求同比将增长 45%,计算机中平均使用的储存
[焦点新闻]
Micron宣布在台成立DRAM卓越制造中心
   Micron  宣布于本月14日成功标得达鸿先进科技的拍卖资产,并将以此建立 Micron 在台之后段生产基地。 Micron 现已取得这新生产基地之所有权。下面就随嵌入式小编一起来了解一下相关内容吧。   经由此收购案, Micron取得与其台中厂相邻的无尘室和设备,并将使Micron 的晶圆制造与后段封测得以集中于同一据点,并专注于建立集中式的后段封测营运。   全球制造副总裁Wayne Allan指出:“此举为Micron在台建立 DRAM 卓越制造中心的重要一步。将晶圆制造和后段封测结合在同一地点,构建一个完整连贯的高效制造支援组织,提供更快的生产周期,将有利于我们的业务和客户。”   新的后端封测生产基地预计将于
[嵌入式]
JZ2440开发板-TFT LCD实验
本实验CPU:s3c2440 LCD: 4.3寸 分辨率(Resolution) 480*272 TFT-LCD 型号AT043TN24 V.1 s3c2440 LCD控制器支持: ①1/2/4/8bpp调色板显示模式,16bpp/24bpp非调色板显示模式 当选定了LCD型号后,硬件工程师做出电路板后,LCD模块接线确定,显示模式就确定了,如本实验使用8bpp调色板显示模式和16bpp非调色板显示模式,两种模式均为565像素格式 NOTE: ①24bpp表示24bit per pixel 即每像素用24位表示,正好对应RRGGBB颜色值 24bpp内存数据格式为: P1是位于内存地址000H的高位
[单片机]
JZ2440开发板-TFT <font color='red'>LCD</font><font color='red'>实验</font>
2014年全球DRAM供给量年成长24.2%
2014年全球DRAM位元供给量虽呈现逐季成长态势,且在第4季达到高点,但在来自智慧型手机与平板电脑等行动装置对Mobile DRAM强劲成长带动下,全球DRAM市场位元需求量成长表现更优于DRAM位元供给量成长,这也将使得2014年全球DRAM市场供过于求状况逐季改善。 DIGITIMES Research预估,2014年第4季DRAM市场价格压力可望暂获舒缓,但面临2015年全球景气成长动力有下修的疑虑,加上第1季淡季效应不利影响下,第4季下旬DRAM市场价格仍将可能面临下修压力。 2014年全球主要DRAM厂仅有华邦电子自南亚科技购买胜普电子8寸晶圆厂,及遭祝融之灾的SK海力士无锡厂产能于2014年上半恢复外
[嵌入式]
DRAM、NAND、NOR一站式采购 美光得偿心愿
  美光科技(Micron Technology)日前宣布完成收购NOR Flash大厂恒忆(Numonyx B.V.)的所有程序。依据协议,美光已发行大约1.38亿股普通股(大约相当于12亿美元)给恒忆股东(英特尔、意法半导体、私募股权基金 Francisco Partners)。   完成收购恒忆后美光成为同时拥有DRAM、NAND以及NOR技术的存储芯片大厂。恒忆去年第4季营收约5.50亿美元,自由现金流量达4,200万美元。交易完成后美光/恒忆将与意法共享位于义大利Agrate的“R2”技术研发/生产设施。恒忆是在2008年3月30日由意法半导体、英特尔以及Francisco Partners合资成立。   依据美光6
[半导体设计/制造]
半导体十大预测 展望2008年
   新年快乐!2008年刚刚开始,根据最近的行业数据显露出电子产业已经投射出不确定性。对于2008年及以后的半导体和集成电路设备市场整体前景,行业预测专家有不同的观点。    为了帮助大家理清市场的混乱,我自己发表一下在2008年关于芯片的展望和和对其他的预测:   请原谅我的悲观,但是从2007年到2008年我确实看到了半导体产业的零增长。进入2008年,仍有一些坏的征兆,次级房贷惨败,油价飙升,美国总统选举,这些都可能带来更多的不确定性。     就微观经济问题,这是我真正关心的:DRAM市场仍然很差劲,在2008年我看不出有什么好迹象。将会有很多的企业频频网络曝光,尤其是来自台湾的企业。美光科技和奇
[模拟电子]
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
  • 学习ARM开发(16)
    ARM有很多东西要学习,那么中断,就肯定是需要学习的东西。自从CPU引入中断以来,才真正地进入多任务系统工作,并且大大提高了工作效率。采 ...
  • 学习ARM开发(17)
    因为嵌入式系统里全部要使用中断的,那么我的S3C44B0怎么样中断流程呢?那我就需要了解整个流程了。要深入了解,最好的方法,就是去写程序 ...
  • 学习ARM开发(18)
    上一次已经了解ARM的中断处理过程,并且可以设置中断函数,那么它这样就可以工作了吗?答案是否定的。因为S3C44B0还有好几个寄存器是控制中 ...
  • 嵌入式系统调试仿真工具
    嵌入式硬件系统设计出来后就要进行调试,不管是硬件调试还是软件调试或者程序固化,都需要用到调试仿真工具。 随着处理器新品种、新 ...
  • 最近困扰在心中的一个小疑问终于解惑了~~
    最近在驱动方面一直在概念上不能很好的理解 有时候结合别人写的一点usb的例子能有点感觉,但是因为arm体系里面没有像单片机那样直接讲解引脚 ...
  • 学习ARM开发(1)
  • 学习ARM开发(2)
  • 学习ARM开发(4)
  • 学习ARM开发(6)
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved