STM32时钟系统
五个蓝色的正方形都是时钟源
HSI(high speed internal)高速内部时钟 RC振荡器不够稳定
图中梯形代表选择器(几选一) PLLXCLK常作为系统时钟来源
HSE (high speed external)高速外部时钟
MCO 是内部时钟输出引脚 对应PA8
绿色矩形对应预分频器
使用每个设备之前 都要进行时钟使能 原因之一就是:设备的功耗问题 不需要的外设就不需要开启时钟了
PCLK1和PCLK2下面挂载了很多外设
备注:某一个外设的时钟被使能后 该时钟振荡器还不能马上稳定 所以还有一个标志位代表其是否稳定
1.对应的是五个时钟源的使能
2.对应的是时钟源的来源配置
3.对应的是由时钟源一层层分频得到的外设时钟的使能
SysTick定时器应用(延时函数)
systic_config这个函数主要设置两个中断之间 有多少个systick时钟周期 即中断之间的时间间隔
SysTick_CLKSourceConfig(SysTick_CLKSource_HCLK_Div8);这一句把SysTick的时钟选择外部时钟,这里需要注意的是: SysTick 的时钟源自 HCLK 的 8 分频,假设我们外部晶振为 8M,然后倍频到 72M,那么 SysTick 的时钟即为 9Mhz,也就是 SysTick 的计数器 VAL 每减 1,就代表时间过了 1/9us。所以 fac_us=SystemCoreClock/8000000;这句话就是计算在 SystemCoreClock时钟频率下延时 1us 需要多少个 SysTick 时钟周期。同理, fac_ms=(u16)fac_us*1000;就是计算延时 1ms 需要多少个 SysTick 时钟周期,它自然是 1us 的 1000 倍。初始化将计算出 fac_us 和fac_ms 的值(其实就是在算定时1us的定时器倒计时的计数值)
注意这个LOAD是有限制的 因为是24位的定时器 所以MAX值为2^24 -1
时钟系统是处理器的核心,所以在学习STM32所有外设之前,认真学习时钟系统是必要的,有助于深入理解STM32。
下面是从网上找的一个STM32时钟框图,比《STM32中文参考手册》里面的是中途看起来清晰一些:
重要的时钟:
PLLCLK,SYSCLK,HCKL,PCLK1,PCLK2 之间的关系要弄清楚;
1、HSI:高速内部时钟信号 stm32单片机内带的时钟 (8M频率) 精度较差
2、HSE:高速外部时钟信号 精度高 来源(1)HSE外部晶体/陶瓷谐振器(晶振) (2)HSE用户外部时钟
3、LSE:低速外部晶体 32.768kHz 主要提供一个精确的时钟源 一般作为RTC时钟使用
在STM32中,有五个时钟源,为HSI、HSE、LSI、LSE、PLL。
①、HSI是高速内部时钟,RC振荡器,频率为8MHz。
②、HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③、LSI是低速内部时钟,RC振荡器,频率为40kHz。
④、LSE是低速外部时钟,接频率为32.768kHz的石英晶体。
⑤、PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。
其中40kHz的LSI供独立看门狗IWDG使用,另外它还可以被选择为实时时钟RTC的时钟源。另外,实时时钟RTC的时钟源还可以选择LSE,或者是HSE的128分频。RTC的时钟源通过RTCSEL[1:0]来选择。
STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz。
另外,STM32还可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。
系统时钟SYSCLK,它是供STM32中绝大部分部件工作的时钟源。系统时钟可选择为PLL输出、HSI或者HSE。系统时钟最大频率为72MHz,它通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
①、送给AHB总线、内核、内存和DMA使用的HCLK时钟。
②、通过8分频后送给Cortex的系统定时器时钟。
③、直接送给Cortex的空闲运行时钟FCLK。
④、送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给定时器(Timer)2、3、4倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2、3、4使用。
⑤、送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给定时器(Timer)1倍频器使用。该倍频器可选择1或者2倍频,时钟输出供定时器1使用。另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
在以上的时钟输出中,有很多是带使能控制的,例如AHB总线时钟、内核时钟、各种APB1外设、APB2外设等等。当需要使用某模块时,记得一定要先使能对应的时钟。
需要注意的是定时器的倍频器,当APB的分频为1时,它的倍频值为1,否则它的倍频值就为2。
连接在APB1(低速外设)上的设备有:电源接口、备份接口、CAN、USB、I2C1、I2C2、UART2、UART3、SPI2、窗口看门狗、Timer2、Timer3、Timer4。注意USB模块虽然需要一个单独的48MHz时钟信号,但它应该不是供USB模块工作的时钟,而只是提供给串行接口引擎(SIE)使用的时钟。USB模块工作的时钟应该是由APB1提供的。
连接在APB2(高速外设)上的设备有:UART1、SPI1、Timer1、ADC1、ADC2、所有普通IO口(PA~PE)、第二功能IO口。
涉及的寄存器:
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x_map.h”中定义如下:
typedef struct
{
vu32 CR; //HSI,HSE,CSS,PLL等的使能
vu32 CFGR; //PLL等的时钟源选择以及分频系数设定
vu32 CIR; // 清除/使能 时钟就绪中断
vu32 APB2RSTR; //APB2线上外设复位寄存器
vu32 APB1RSTR; //APB1线上外设复位寄存器
vu32 AHBENR; //DMA,SDIO等时钟使能
vu32 APB2ENR; //APB2线上外设时钟使能
vu32 APB1ENR; //APB1线上外设时钟使能
vu32 BDCR; //备份域控制寄存器
vu32 CSR;
} RCC_TypeDef;
可以对上上面的时钟框图和RCC寄存器来学习,对STM32的时钟系统有个大概的了解,然后对照我们的《STM32不完全手册》的系统时钟配置函数void Stm32_Clock_Init(u8 PLL)一同来学习。
上一篇:STM32中的WFI和WFE指令的意思
下一篇:STM32 AD C单次转换模式 连续转换模式 扫描模式
推荐阅读最新更新时间:2024-11-12 18:26
设计资源 培训 开发板 精华推荐
- OP484FPZ 2.5V 参考在单 3V 电源上运行的典型应用
- PCB二改
- 智能电表 - AMI 2.0
- LT2940CMS 8V 至 32V、8W 负载电流监视器的典型应用电路
- 基于 A7987 的 STEVAL-ISA207V1、3A、4.5V 至 60V Vin 降压 DC/DC 开关稳压器评估板
- 【训练营】关于物联网时钟
- ADZS-21364-EZLITE、ADSP-21364 EZ-KIT Lite评估系统基于SHARC数字信号处理器(DSP)
- 【训练营】一条狗腿
- 使用 Analog Devices 的 LTC3130IMSE 的参考设计
- MAXREFDES1086:效率为91.4%的小尺寸,5V / 500mA,同步,无光耦、反激式DC-DC转换器