MSC1210具有以下主要特性:
◇ 3个16位的定时器,16位PWM波输出;
◇ 多达21个中断源;
◇ 32个数字输入/输出端口,带有看门狗;
◇ 8路ADC提供24位分辨率可编程的无丢失码解决方案;
◇ 可编程增益放大(PGA)在1~128之间可调,极大提高了ADC精度;
◇ 供电电源2.7~5.25 V,在3 V时功耗低于4 mW,停止方式电流小于1μA;
◇ 内核兼容8051,指令与8051完全兼容,可以使用原有8051开发系统;
◇ 时钟频率可达33 MHz,单周期指令执行速度达8 MIPS,执行速度比标准8051快3倍;
◇ 高达32 KB的Flash存储器,SRAM达1.2 KB,外部可扩展至64 KB存储器;
◇ Flash在电压低达2.7 V时仍可串行或并行编程,可10万次擦除/写操作;
◇ 具有32位累加器;
◇ 有电源管理功能,能够进行低电压检测,在片上电复位;
◇ 带FIFO的SPI端口,双UART;
◇ 64TQFP封装,MSC1210系列的硬件和引脚完全兼容,必要时可以互换。
图1 系统结构和功能框图
1 内核兼容8051但速度更快功能更强
MSC1210系列的所有指令功能与标准8051相同,对位、标志和寄存器的影响相同,但时序不同。MSC120单片机使用精简的8051内核,在同样的外部时钟作用下,其执行速度比标准8051快1.5~3倍(每条指令有4个时钟周期与12个时钟周期的区别)。在同样的指令和时钟下,速度提高到2.5倍以上。因此,一个时钟为33 MHz的MSC1210执行速度与一个时钟为82.5 MHz的标准8051相同,其区别可以从图2看出;而且MSC1210的定时器和计数器可以选择每12个或4个时钟周期计数一次。
MSC1210提供了双数据指针(DPTR)加速数据块的移动速度,它能根据外部存储器的速度调节读写速度,在2~9个指令周期之间变化;它还提供给外部存储器16位地址总线(P0和P2)。低位地址通过P0口复用得到,硬件可以控制P0和P2口是作为地址线还是作为通用的I/O。
为了更好地提高效率,外围设备也在8051基础上作了改进。如SPI端口就增加了FIFO,使得传输数据有了缓冲区间。32位累加器的使用在处理ADC采样或其它数据源来的多字节数据时将大大减轻CPU的负担,使得24位加法和移位可以在几个指令周期内完成,而无需通过软件用数百个指令周期来完成。
MSC1210系列的硬件和引脚完全兼容,对用户而言,唯一的区别在于内存配置不同。MSC1210Y2上编写的程序代码可以直接在MSC1210Y3、MSC1210Y4、MSC1210Y5上执行。用户可以在软件功能上增减并配以不同的CPU型号,MSC1210已成为一个拥有几个不同应用平台的标准设备。
MSC1210的开发工具与8051的开发系统完全兼容,用户可以使用原有的8051开发系统,也可以使用DEMO板带的开发系统或者第三方支持者提供的开发工具。
2 24位高分辨率ADC通道
(1)ADC的输入多路复用器及输入缓冲
输入多路复用器允许不同输入信号通过选择输入通道进行组合,如AIN0被选为ADC输入正端,其它任何通道可以选为ADC输入负端。用这种方式可以组成8个完整的ADC输入通道,也可以在差分输入通道间切换极性。片上的二极管可以提供温度测量,当输入多路复用器的寄存器置为全“1”时,二极管被接入ADC通道的输入端开始测量温度。
MSC1210在没有缓冲区时输入电阻为5M/PGA,缓冲区由ADC控制寄存器中的BUF位控制。当没有选择输入缓冲区时,模拟输入阻抗与时钟频率(ACLK)和增益(PGA)有关,其关系式为
其模拟输入通道的等效结构如图3所示。
(2)可编程增益放大器PGA
① PGA:可编程增益放大PGA可以设为1、2、4、8、16、32、64、128,使用PGA确实能提高ADC的分辨率。当PGA=1,量程范围为5 V时,ADC能分辨到1μV;当PGA=128,量程范围为40 mV时,ADC能分辨到75 nV;而在PGA=1时,在5 V量程范围内需要一个26位的ADC才能分辨到76 nV。
② PGA偏移DAC:ODAC寄存器是8位,它能将输入到PGA的模拟信号偏移PGA满量程的一半,其最高位为符号位,低7位提供偏移量。由于ODAC给PGA引入的是模拟量而不是数字量偏移,所以并不影响测量结果的精度。
(3)电压参考基准
MSC1210的电压参考可以是内部的也可是外部的,上电复位以后的电压参考是内部的2.5 V,参考电压的选择通过ADCON0控制。片上内部参考电压有1.25 V和2.5 V两种可选,其精度可达0.2 %,温漂仅为5×10-6/℃,可大大提高测量精度。如果没有用到内部参考电压,就应该将其关掉以减少噪声和功耗。VREFOUT引脚处应该放一个0.1μF去耦电容。外部参考电压为REF IN+与REF IN-之间的差值,引脚上的绝对电压在AGND与AVDD之间,但其差分电平不能超过2.6 V。
3 片内存储器
MSC1210包括片上1.2 KB SRAM ,256字节DARAM,2KB启动ROM,32 KB Flash存储器。
MSC1210用内存寻址表来区分程序存储空间和数据存储空间。程序空间由单片机自动读取,通过指令MOVC来读程序空间;数据空间通过指令MOVX来读写。当片上存储使能时,在片内范围内的读写将在片内存储器上进行,片外存储器通过P0和P2寻址来实现。HCR1寄存器的第0位和第1位设为0就可以访问外部存储器,此时可以通过P0和P2口访问所有片内和片外存储空间。为了安全起见,在访问片内存储器期间,P0口全部置位为0。
MSC1210包含1.2 KB片上SRAM。SRAM起始地址位“0”,通过MOVX指令读写。SRAM也可以从8400H开始,既可作程序空间又可作数据空间。
MSC1210有256字节DARAM,地址为0000H~00FFH,其中128字节为128个SFR,地址为0080H~00FFH。SFR寄存器用做控制和状态,标准的8051功能和MSC1210的附加功能是通过SFR实现的。从没有定义的SFR寄存器将得到“0”,写入没有定义过的SFR得到的结果无法确定。DARAM的另一个用途,是通过SFR的堆栈指针作为堆栈使用。
在串行或并行编程时,有2KB启动ROM控制运行。在用户模式下,BOOT ROM位于F800H~FFFFH;在编程模式下,BOOT ROM位于程序空间的起始2K。
Flash存储器既可用做程序存储空间又可用做数据存储空间,用户可以灵活配置程序和数据存储空间的大小。分区大小通过硬件配置位来确定,可以通过串行或并行的方式来编程确定。在用户应用模式下,程序和数据Flash存储空间都可读可写。
4 Flash编程应用
可编程的Flash存储器分为4个部分:128字节的配置部分、复位向量、程序存储空间、数据存储空间。
Flash编程模式有串行和并行两种模式,通过上电复位过程当中的ALE和信号状态确定。当ALE=1,=0时,选择串行编程模式;当ALE=0,=1时,选择并行编程模式。当ALE和都为高电平时,MSC1210运行在用户模式下;当ALE和都为低电平时,MSC1210没有定义。
MSC1210的Flash存储器初始值全部为“1”,并行编程模式包括一个专用的编程器,串行编程方式通常为在线编程,用户应用模式允许对Flash程序和数据存储器编程。对Flash编程的实际代码不能从Flash执行,而必须从BOOT ROM或RAM处开始执行。
MSC1210有两个硬件配置存储器(HCR0、HCR1),在Flash编程模式下可编程。用户通过对这两个存储器编程可以在程序存储空间(PM)和数据存储空间(DM)之间定义分区,如表1所列。
表1 MSC1210的Flash分区
HCR0 | MSC1210Y2 | MSC1210Y3 | MSC1210Y4 | MSC1210Y5 | ||||
DFSEL | PM/KB | DM/KB | PM/KB | DM/KB | PM/KB | DM/KB | PM/KB | DM/KB |
000 | 0 | 4 | 0 | 8 | - | - | - | - |
001 | 0 | 4 | 0 | 8 | - | - | 0 | 32 |
010 | 0 | 4 | 0 | 8 | 0 | 16 | 16 | 16 |
011 | 0 | 4 | 0 | 8 | 8 | 8 | 24 | 8 |
100 | 0 | 4 | 4 | 4 | 12 | 4 | 28 | 4 |
101 | 2 | 2 | 6 | 2 | 14 | 2 | 30 | 2 |
110 | 3 | 1 | 7 | 1 | 15 | 1 | 31 | 1 |
111(缺省) | 4 | 0 | 8 | 0 | 16 | 0 | 32 | 0 |
注:当程序空间选择0KB时,程序在片外执行;"一"表示保留。
用户可以通过MOVX指令来读写Flash存储器,而不论Flash存储器是被定义为程序存储器还是数据存储器。这意味着用户可以将全部空间分为程序存储空间,并将程序空间当数据存储空间用。当PC指针指向的程序空间实际上存放的是数据时,将会导致不可预知的后果。因此,当要用Flash存储数据时,一定要求使用Flash分区,Flash分区禁止在数据存储空间执行程序。同样,也禁止程序空间的擦写而允许在数据存储空间读写。
5 结 论
MSC1210作为一款高性能的内核兼容8051的单片机,其开发的方便、灵活和高精度ADC的使用满足了使用者的要求,其指令执行速度更是实时系统所渴求的,可广泛用于工业过程控制、医疗仪器、智能传感器等各个领域。
上一篇:一种新型单片机MSC1210及其应用
下一篇:一种新型单片机MSC1210及其应用
推荐阅读最新更新时间:2024-03-16 12:18
- 热门资源推荐
- 热门放大器推荐
设计资源 培训 开发板 精华推荐
- 新年狂欢盛宴,TI开发板秒不停!!!
- 【分享成长,10月有奖】EEWORLD优秀主题/回复第15期活动开始啦!!!
- 下载有礼|是德科技电子书 《通过了解测试精度的基础知识, 提高良率并降低风险》,不做“差不多先生”
- 借助 Microchip 生态系统中的 PIC® 和 AVR® 单片机开启嵌入式到云端之旅 系列在线研讨会
- Nexperia 模拟和逻辑芯片 更低的电压、更出色的性能 答题赢好礼!
- 艾睿电子&ADI有奖直播:无需光耦的flyback隔离电源设计
- 有奖直播:赋能移动电源,贝能推出1800W全数字双向电源方案
- 新年祝福语 欢乐大竞猜
- 看Atmel SAM D MCUs专题视频,答题赢好礼
- 世健的ADI之路主题游第二站:仪器仪表站,打卡赢好礼~