基于MSP430单片机的多路数据采集系统的设计

发布者:量子心跳最新更新时间:2007-02-06 来源: 现代电子技术关键字:MCU  传输  采样  频率 手机看文章 扫描二维码
随时随地手机看文章
1 引 言

数据采集是从一个或多个信号获取对象信息的过程。随着微型计算机技术的飞速发展和普及,数据采集监测已成为日益重要的检测技术,广泛应用于工农业等需要同时监控温度、湿度和压力等场合。数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。本文设计的多路数据采集系统采用MSP430系列单片机作为MCU板的核心控制元件。MSP430系列单片机是由TI公司开发的16位单片机,其突出特点是强调超低功耗,非常适合于各种功率要求低的场合。该系统采样电路采用MSP430单片机内部12位的A/D,使系统具有硬件电路得以简单化,功耗低的特点。由于该系列较高的性能价格比,应用日趋广泛。

2 系统的基本组成和工作原理

在本数据采集系统的设计中为了提高系统智能化、可靠性和实用性,采用单片MCU和上位机传输的方法,即MCU运行在数据采集系统的远端,完成数据的采集、处理、发送和显示,上位机则完成数据的接收、校验及显示,同时上位机可对远端MCU进行控制,使其采集方式可选。MCU选用TI公司的低功耗MSP430F437,该单片机比80C51功能要强大许多,他内部不仅有8路12位A/D,而且还带LCD的驱动,节省了不少外围电路。本系统现场模拟一正弦波信号以及其他6路分压信号以供系统进行多路采样,采用ICL8038精密信号发生芯片产生一频率可变的正弦波,然后由LM331芯片实现频率到电压的转换,之间还需对信号进行调理以符合系统要求。

3 系统硬件电路设计

系统硬件总体框图如图1所示。本系统由模拟板和MCU板2块板组成,模拟板包括系统电源、正弦波信号发生模块、频率电压转化模块、信号调理模块和7路A/D的接口;MCU板包括电源及A/D接口、MCU、LCD和串口收发模块。

3.1 正弦信号发生模块

正弦信号发生模块主要采用集成函数发生器ICL8038,ICL8038函数发生器是采用肖特基势垒二极管等先进工艺制成的单片集成电路芯片,具有电源电压范围宽、稳定度好、精度高等优点,外部只需接入很少的元件即可工作,可同时产生方波、三角波和正弦波。ICL8038及外围电路如图2所示,由8脚输入外部控制电压,调节电位器P1即可使2脚输出的正弦波信号频率发生变化,实现外部压控振荡。10,11脚之间接0.01 μF的振荡电容,4,5脚接电阻和电位器,调节正弦波失真度。

3.2 频率电压变换模块

频率电压变换模块的设计采用集成芯片LM331,LM331采用新的温度补偿能隙基准电路,在整个工作温度范围内和低到5.O V电源电压下都有极高的精度。LM331的动态范围宽,可达100 dB;线性度好,最大非线性失真小于O.01%,工作频率低到0.1 Hz时尚有较好的线性度;转换精度高,数字分辨率可达12位;外接电路简单,只需接入几个外部元件就可方便构成V/F或F/V等变换电路,并且容易保证转换精度。本系统中的所设计的频率电压变换电路如图3所示。

调节P1使Rs为12.8 kΩ左右即可,则当fi=200 Hz时Vo=O.22 V;当fi=2 kHz时,Vo=2.22 V。

3.3 信号调理模块

信号调理模块包括信号放大整形电路和信号放大调理电路。图4为采用A/D824设计的信号放大整形及调理电路。图4(a)中由ICL8038产生的正弦波信号先经过1 μF电容高通滤波,再经A/D824反向放大2倍,然后经比较器,输出对应频率的方波信号,作为LM331的输入。200 Hz~2 kHz的方波信号经过LM331频率电压变换芯片后,产生的信号Vo为O.22~2.22 V,为符合200 Hz~2 kHz对应于1~5 V,故需对Vo进行调理,方案中的运算电路如图4(b)所示。

3.4 系统电源模块

系统采用±12 V直流电源供电,直接供给ICL8038,LM331及A/D3824,将输入的+12 V电压经过LM317可调三端稳压管产生+5 V电压,通过电阻分压产生其他O,1 V,2 V,3 V,4 V,5 V共6路数据供给A/D采样,单片机板需+3.3 V供电,可由+5 V经另一LM317产生得到。为减小电源噪声,给各个电源均加上滤波电容,一般取10 μF和0.1 μF的大小电容组合。

3.5 单片机模块

本系统主要运用了MSP430单片机的以下性能特点:低工作电压、超低功耗、8通道12位A/D转换器、驱动液晶能力可达160段等,使硬件电路得以简单化。单片机及外围电路如图5所示,即为系统MCU板的电路原理图。由5 V电源经LM317产生3.3 V直流电压给MSP430供电,单片机负责采集7个通道的电压数据并在LCD上显示对应电压值,同时单片机和上位机进行串行通讯,通讯方式采用标准的RS 232方式,也可采用RS 485差分方式接口以改善通讯速率和距离,但需在上位机前另加485-232转换芯片,稍显复杂,因此采用RS232即可满足系统要求,简单又实用。

通过上位机可对单片机的采样模式进行控制,即循环采集和固定通道采集2种模式,实现了远端可控的数据采集。

4 系统软件设计

本系统的采用C语言编写,实现功能包括:7路A/D采样、LCD显示和串口收发,其中7路A/D采样可由上位机控制采样方式,即循环采样和固定通道采样,LCD显示采样值和对应的通道号,系统通过串口和上位机进行通讯。

4.1 软件流程图

图6为本系统软件主流程图。

系统上电后,对各模块进行初始化,包括:A/D模块、定时器A、看门狗、LCD以及串口等。然后判断采样方式,进行采样和显示,系统默认的采样方式为7通道循环采样。

5 结语

本系统是基于MSP430单片机的多路数据采集系统,系统采用单片机与上位机进行通讯,实现了远端控制的功能。

本系统有以下特点:

(1)本系统采用集成函数发生器ICL8038产生一正弦信号,用于模拟现场需要采集的数据,产生的模拟信号精度较高。

(2)系统采用低功耗、功能强大的MSP430单片机,MSP430单片机配置了8路外部通道12位的A/D,可实现多路数据采集,精度较高,可同时采集7路数据且采集方式可控制。采用单片机内部12位的A/D,使系统硬件电路得以简化。

(3)系统中单片机与上位机之间采用RS 232标准接口方式进行通讯,也可采用RS 485差分方式进行传输,以改善通讯速率和传输距离。

本系统中MSP430单片机负责对7路数据采集、处理和显示,同时应答上位机命令;上位机面向用户,可以对系统进行控制,向单片机发送命令选择数据采集的方式。

本系统可实现对7路模拟信号的采集,采集精度较高,可满足一般场合的应用。

关键字:MCU  传输  采样  频率 引用地址:基于MSP430单片机的多路数据采集系统的设计

上一篇:用单片机数据采集系统研究瞬变过程
下一篇:基于MSP430单片机的多路数据采集系统的设计

推荐阅读最新更新时间:2024-03-16 12:18

基于51单片机实现短距离无线通信
1 引言 短距离无线传输具有抗干扰性能强、可靠性高、安全性好、受地理条件限制少、安装灵活等优点,在许多领域有着广泛的应用前景。低功耗、微型化是用户对当前无线通信产品尤其是便携产品的实际需求,短距离无线通信逐渐引起广泛关注。常见的短距离无线通信有基于802.11的无线局域网WLAN、蓝牙(blueTooth)、HomeRF及欧洲的HiperLAN(高性能无线局域网),但其硬件设计、接口方式、通信协议及软件堆栈复杂,需专门的开发系统,开发成本高、周期长,最终产品成本也高。因此这些技术在嵌入式系统中并未得到广泛应用。普通RF产品不存在这些问题,且短距离无线数据传输技术成熟,功能简单、携带方便,使其在嵌入式短程无线产品中得到了广泛应用
[单片机]
基于51<font color='red'>单片机</font>实现短距离无线通信
MCU量增价跌跌不休 毛利率牺牲打能否阻挡红潮
据海外媒体报道,面对中国大陆官方携手产业发展基金强攻半导体市场,台湾半导体供应链事实上正迎来巨大挑战。除了不断发生的整并潮外,大陆业者积极的价格竞争逐渐使得市场版图出现挪移。台系IC设计相关业者也坦言,台厂其实具有不错的研发技术与能量,如MCU微控制器,是可以力保接近50%的高毛利率,但是面对激烈的价格战,台湾厂商需要再思考的是如何在毛利率与市占率中做出取舍。 回顾2016年消费电子产品市场,智能手机两大龙头三星电子(Samsung Electronics)、苹果(Apple)仍是亮丽主角,苹果的畅旺带动台系半导体供应链蓬勃发展,举凡晶圆代工大厂台积电、封测的日月光、矽品、力成等,IC代理通路的文瞱等等,iPhone 7系
[单片机]
AVR单片机对开关电源的控制方法
单片机控制开关电源,单从对电源输出的控制来说,可以有几种控制方式。 其一是 单片机 输出一个电压(经DA芯片或PWM方式),用作电源的基准电压。这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动。这种方式最简单。 其二是 单片机 扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作。这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法。 其三是 单片机 扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接
[单片机]
AVR<font color='red'>单片机</font>对开关电源的控制方法
单片机控制LED智能路灯系统设计
摘要:本控制系统以STC89C58RD单片机为控制器,主要由恒流源电路、时钟定时电路、显示电路、光敏感应电路、红外接收电路、声光报警电路等组成。能设定路灯(LED)开灯关灯时间(用LED12864显示相关信息)。路灯(LED)通过恒流源电路正常工作,即使遇到短路、电压不稳定等情况也不会烧掉,电路起恒流保护作用。而系统遇到环境明暗变化时,路灯会自动关闭和打开,并且根据道路上交通状况自动调节亮灯情况,且有定时功能。   0 引言   随着数字技术和网络技术的发展,路灯数字化和网络化已经成为一种必然趋势。节约能源、保证灯具寿命、提高照明管理水平、美化城市夜晚和保证城市夜间出行安全等,已经成为对照明系统的一项基本要求。社会文明的不断发
[模拟电子]
<font color='red'>单片机</font>控制LED智能路灯系统设计
浅谈单片机程序设计中的“分层思想”
浅谈单片机程序设计中的“分层思想” 随便写下的一点东西,本来打算去发表,不过想想还是算了,不是什么重要的东西,不过这个东西确实很有用。文章烂的去组织和修改了,随便看看吧。 分层的思想,并不是什么神秘的东西,事实上很多做项目的工程师本身自己也会在用。看了不少帖子都发现没有提及这个东西,然而分层结构确是很有用的东西,参透后会有一种恍然大悟的感觉。如果说我不懂LCD怎么驱动,那好办,看一下datasheet,参考一下阿别人的程序,很快就可以做出来。但是如果不懂程序设计的思想的话,会给你做项目的过程中带来很多很多的困惑。 参考了市面上各种各样的嵌入式书籍,MCS-51,AVR ,ARM 等都有看过,但是没有发现有哪本是介绍设计思想的
[单片机]
基于AVR单片机SPI的串行设计
1、AVR单片机的SPI接口   SPI(SerialPeripheralINTERFACE---串行外设接口)总线系统是一种同步串行外设接口,允许MCU与各种外围设备以串行方式进行通信、数据交换,广泛应用于各种工业控制领域。基于此标准,SPI系统可以直接于各个厂家生产的多种标准外围器件直接接口。SPI接口通常包含有4根线:串行时钟(SCK)、主机输入/从机输出数据线(MISO)、主机输出/从机输入数据线(MOSI)和低电平有效的从机选择线SS。在从机选择线SS使能的前提下,主机的SCK脉冲将在数据线上传输主/从机的串行数据。主/从机的典型连接图如图(1)所示: 图(1)主/从机的连接图  串行外设接口SPI允许 ATmeg
[单片机]
基于AVR<font color='red'>单片机</font>SPI的串行设计
MLX90601系列红外测温模块的原理及应用
1 引言    一般来说,测温方式可分为接触式和非接触式,接触式测温只能测量被测物体与测温传感器达到热平衡后的温度,所以响应时间长,且极易受环境温度的影响;而红外测温是根据被测物体的红外辐射能量来确定物体的温度,不与被测物体接触,具有不扰动被测物体温度分布场,温度分辨率高、响应速度快、测温范围广,稳定性好等特点,近年来在汽车电子、航空和军事上得到越来越广泛的应用。 2 测温原理概述   PWN 的全称是 Pulse Width Modulation (脉冲宽度调制)即通过调节脉冲的周期、宽度,以达到变压、变频的目的,数字式脉宽调制方式中,数字是控制信号,通过改变高低电平数的比值达到改变占空比的目的,
[应用]
单片机硬件参数设计解析
摘要:随着目前新技术、新工艺的不断出现,高速单片机的应用越来越广,对硬件的可靠性问题便提出更高的要求。本文将从硬件的可靠性角度描述高速单片机设计的关键点。 关键词:高速单片机 可靠性 特性阻抗 SI PI EMC 热设计 引 言 随着单片机的频率和集成度、单位面积的功率及数字信号速度的不断提高,而信号的幅度却不断降低,原先设计好的、使用很稳定的单片机系统,现在可能出现莫名其妙的错误,分析原因,又找不出问题所在。另外,由于市场的需求,产品需要采用高速单片机来实现,设计人员如何快速掌握高速设计呢? 硬件设计包括逻辑设计和可靠性的设计。逻辑设计实现功能。硬件设计工程师可以直接通过验证功能是否实现,来判定是否满足需求。这
[工业控制]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved