减小ADC量化噪声的技术

发布者:脑洞飞翔最新更新时间:2008-07-13 来源: 电子系统设计关键字:采样  噪声  功率  周期  电压  转换器 手机看文章 扫描二维码
随时随地手机看文章
  数模转换器(ADC)提供了许多系统中模拟信号到数字信号的重要转换。它们完成一个模拟输入信号到二元有限长度输出命令的振幅量化,范围通常在6到18b之间,是一个固有的非线性过程。该非线性特性表现为ADC二元输出中的宽带噪声,称作量化噪声,它限制了一个ADC的动态范围。本文描述了两种时下最流行的方法来改善实际ADC应用中的量化噪声性能:过采样和高频抖动。

  为理解量化噪声缩减法,首先让我们回顾一下,一个理想的N位ADC的信号与量化噪声比为(单位dB)

  SNRQ=6.02N+4.77+20log10(LF)dB,

  其中:LF=ADC的输入模拟电压级的加载因子测量(SNRQ由参考资料1提供)。参数LF定义为模拟输入电压的均方根(RMS)除以ADC的峰值输入电压。当ADC的输入电压为一个可以覆盖转换器满量程电压的正弦曲线,LF=0.707。假如那样的话,SNRQ等式中的最后一项变为?3dB,并且ADC的最大输出信号与噪声比为:

  SNRQ-max=6.02N+4.77?3=6.02N+1.77dB。

  在技术文献中非常普遍的SNRQ-max公式说明了为什么工程师要对ADC的SNR使用一个经验值6dB/b。

  作为一个应用问题,SNRQ-max公式是不切实际的乐观。首先,SNR公式描绘了一个在现实世界中不存在的理想ADC。第二,在实际应用中,ADC的输入极少会覆盖全部值。现实世界的模拟信号通常实际上是脉冲信号,而促使ADC的输入变为饱和引发了可大大减小ADC输出SNR的信号切割。但是,本文将假设一个使用大部分输入模拟电压范围的高品质ADC而非研究最坏情况下的场景。

  假定ADC的SNR为6dB/b,下一步是考虑作为可能改进SNRQ的过采样法。减小ADC量化噪声的过采样过程简单直观。模拟信号在fs采样率被数字化,该采样率高于满足Nyquist标准(两倍输入模拟信号带宽)所需的最小采样率,然后被低通过滤。

  过采样基于如下假设:一个ADC的总量化噪声功率(方差)为转换器最小有效位(LSB)电压的平方除以12:

  总量化噪声功率=σ2=(LSB value)/12

  过采样同样假设量化噪声值是真实随机的;这意味着在频率范围内,量化噪声有一个平滑的频谱。(如果ADC是由一个覆盖转换器模拟输入电压范围重要部分的模拟信号驱动且周期性不明显,该假设有效)。

  图1显示了量化噪声的另一方面,功率频谱密度(PSD)。这是在每Hz噪声功率下测量的量化噪声的频率范围特征。利用PSD,量化噪声可以被表示为每单位带宽的功率大小。随机噪声假设得到的总量化噪声(基于转换器LSB电压的固定值)被均匀分布在频率范围内,从?fs/2到+fs/2,如图1所示。该量化噪声PSD的振幅为总量化噪声功率除以总带宽fs,其中振幅出现在总带宽上:

  PSDnoise=[(LSB value)2/12](1/fs)=(LSB value)2/12fs

  单位为W/Hz。

  下一个问题是:“怎样才能减小PSDnoise等级?”利用一个具有附加位分解的ADC,可以减小分子中的LSB值,这个ADC将减小LSD值同样也减小PSDnoise。不过这是一个昂贵的解决办法。更好的办法是用更高采样率来增大分母。

  采用更高采样率的结果在图2(a)中用低级离散信号表示。通过将ADC的fs,old 采样率增加到某一更高值fs,new (过采样),总噪声功率(一个不变值)被分布在一个广泛的频率范围内[图2(b)]。由于一个转换器的总量化噪声功率仅依赖于位数而不是采样率,图2(a)和2(b)中阴暗曲线下的面积相等。将一个低通过率器放在转换器的输出来减小量化噪声等级对信号的损害。

  通过过采样得到改进的信号与量化噪声比为,以dB为单位:

  SNRQ-gain =10log10(fs,new /fs,old )。

  SNRQ-gain 表达式的出处在参考资料1中提供。作为一个SNR的函数,N位ADC的位数大约是SNR/6,因此总有效位数为10log(M)/6+N,其中M=fs,new /fs old ,。这意味着如果采样率M为2,则ADC的有效位数是Nos=0.5+N。利用因数为2的过采样,可获得在有效SNR中的一半位。获得一个特殊的K额外有效位数所需的过采样率M由式子M=4K得出,因而有效位数为Nos=K+N。

  举例说明,如果fs,old =100kHz,且fs,new=400kHz,SNRQ-gain =10log10(4)=6.02dB。这样,因数为4的过采样(和过滤)将量化噪声减小到1b。从而,有可能由一个N位ADC得到N+1位的性能,因为信号振幅分解是以更高采样速度为代价得到的。经过数字过滤后,输出信号可以被减小到低级fs,old 而不会有损改进了的SNR。

  当然,为了能从过采样方案中受益,用于低通滤波器系数和寄存器的位数必需超过ADC的初始位数。通过利用依赖于用x(t)表示的干扰模拟噪声的数字低通过率器,就有可能采用图2(c)中与低采样率下所需的模拟过滤器相对的低性能(更简单)模拟抗混迭滤波器。

  第二个用来最小化ADC量化噪声影响的技术是高频抖动,它在进行模拟数字转换前将噪声加入模拟信号。一个例子是,图3(a)中显示的数字化低级模拟正弦信号。该信号的峰值电压刚刚超过了单个ADC的LSB电压级,引起转换器输出x1 (n)个样本。由于高峰值正弦电压级,x1(n)输出序列被省略,并且在其频谱范围内产生谱谐波,该谐波与图3(c)中的量化噪声周期一样很明显。

  图4(a)显示x1(n)的频谱,以dB为单位,在那里乱真量化噪声谐波非常明显。平均多频谱不可能将某些频谱关注的部分提升到那些乱真谐波级之上,注意到这点很有所值。因为量化噪声与输入正弦波紧密相关,量化噪声的时间周期与输入正弦波一样,频谱平均同样也会提高噪声谐波级。然而高频抖动将提供帮助。

  高频抖动的结果为一个越过附加转换器LSB界限且产生更随机量化噪声的噪声模拟信号,以及降低不希望出现的频谱谐波级[图4(b)]。抖动提高了平均频谱噪声基数但却使SNR2增加。抖动迫使量化噪声丧失其与初始输入信号的一致性,如果想要的话,该一致性将会从平均化中受益。

  当数字化低振幅模拟信号,长周期模拟信号(比如在采样时间间隔中有偶数周期的正弦波),和变化缓慢的(低频或DC)模拟信号时,高频抖动十分有用。图5(a)显示了高频抖动的标准执行。由噪声二极管或噪声产生器集成电路提供,用于该过程的大量随机宽带模拟噪声具有一个峰到峰值为1/3-to-1LSB电压级。

  Wannamaker已经表示使用TPDF的抖动处理会导致具有不变零均值和独立于输入信号特征的不变(非零)功率的量化噪声。这些都是量化噪声非常期待的特性;前者保证数字转换器的输出平均起来等于输入;后者保证将不会出现“噪声调制”。噪声调制在量化噪声的功率依赖于信号或者被信号调制时出现。这对音频信号来说具有感性意义,而且通常是不需要的。

  对苛求的高性能音频应用来说,工程师已经发现该类型的抖动是理想的。它可以通过从两个分离的,独立的,均匀分布的(也称作矩形PDF)噪声产生器增加抖动噪声产生。两个独立噪声源之和的PDF是它们各自PDF的卷积。因为两个矩形函数的卷积是三角形的,这个双噪声源抖动方案产生所需的TPDF。理想的TPDF抖动噪声具有刚好两个LSB电压级的峰对峰级。

  在关注信号占据了全频带0到fs/2中某些已明确定义部分的情况下,发射具有等同于4到6LSB电压级的峰对峰值,和具有信号带外部频谱能量的频谱状抖动噪声将是有益的。Wannamaker给出了“过滤抖动”特征的充分(非必要)条件,这将保证作为结果的量化噪声功率独立于信号,并且显示外加一个常量(以频率为单位)噪声功率后,最终的抖动噪声频谱将在形状上类似于量化噪声频谱。来自正弦波信号的量化噪声将产生额外的乱真谐音!然后,该窄带抖动噪声可以由后继的信号过滤消除。

  本文中讨论的高频抖动类型被人们认为是“非负抖动”(NSD)。图5(b)说明了被称为“负抖动”(SD)的另一种应用抖动方式。一个SD系统拥有所有抖动的优点(随机化了量化噪声),却没有它的任何缺点(未增加整体噪声功率)。Wannamaker说明了有适当特性的负抖动将如何得到频谱空白和均匀分布的总量化噪声。

关键字:采样  噪声  功率  周期  电压  转换器 引用地址:减小ADC量化噪声的技术

上一篇:单线串行总线可传递相互隔离的电源和数据
下一篇:消除多路复用DAC的输出错误

推荐阅读最新更新时间:2024-03-16 11:33

爱特梅尔发布用于汽车密匙应用带防盗器超低功率AES-128 AVR微控制器
微控制器及触摸解决方案的领导厂商爱特梅尔公司(Atmel® Corporation)宣布提供带有AES-128防盗器协议堆栈的全新超低功率AVR®微控制器(MCU)产品ATA5790N。该器件在单一5mm x 7mm 封装中集成有低频(LF)防盗器(immobilizer)功能和一个3D LF接收器。爱特梅尔 ATA5790N配合ATA5830射频(RF)发送器使用,可用于大批量单向和双向的汽车无源门禁和无源启动系统密匙。 AVR微控制器具有16kB闪存和2kB EEPROM。在16kB闪存中,14kB容量用于应用软件,2kB容量则用于防盗器功能。控制器核心周围配有专用硬件加速器,允许以软件实现任何防盗器协议,而不会影响典型的
[单片机]
业界首款零漂移、毫微功率放大器,兼具超低功耗超高精度
德州仪器(TI)(NASDAQ: TXN) 近日推出了首款兼具超高精度和领先业内的超低电源电流运算放大器。LPV821零漂移、毫微功率运算放大器具有出色的功率 - 精度性能,可帮助工程师获得极高的直流精度,且功耗比同类零漂移器件低60%。 LPV821设计用于高精密应用,如无线传感节点、家庭和工厂自动化设备以及便携式电子设备。如需了解更多信息,敬请访问 www.ti.com.cn/lpv821-pr-cn 。 LPV821运算放大器是 TI低功耗放大器产品系列 中的最新产品,电池容量更低和系统寿命更长,可帮助工程师设计更轻、更小、更便携的应用。 LPV821运算放大器的主要特性和优势 卓越的功率 - 精度性能:LPV
[嵌入式]
2022年RF功率半导体市场达15亿美元
根据Yole Développement公司最新名为“2017年RF功率市场和技术:GaN、GaAs以及LDMOS”的报告预测,随着电信运营商投入的减少,射频功率半导体市场在2015年和2016年缩水之后,2016年至2222年该市场(3W以上的应用)将以9.8%的复合年均增长率(CAGR)增长,将从2016年的15亿美元增长到2022年的25亿美元以上,增长率达75%。 此增长趋势是由电信基站升级以及小型基站部署推动的。 Technology & market分析师Zhen Zong表示:“在未来五年内向5G实施的革命性转型正在极大改变RF技术的发展。”这不仅适用于智能手机应用,而且还适用于3W以上的射频电信基础设施应用;而5
[半导体设计/制造]
基于KAI-01050 CCD功率电路的驱动方案
  本方案对部分重点电路进行了仿真验证,并通过测试验证了本方案所设计的驱动电路各部分功率驱动电路满足KAI-01050 CCD的功率驱动要求,在四通道输出模式下,帧频可达120 f/s,充分验证了该方案的合理性。   此CCD功率驱动电路的难点包括40 MHz高速水平转移和复位时钟驱动、三电平阶梯波形垂直转移时钟V1和高压脉冲电子快门信号驱动设计。利用高速时钟驱动器ISL55110和钳位电路实现了高速水平转移时钟的驱动;利用两个高速MOSFET驱动器组合的方案,实现了三电平阶梯波形垂直转移时钟V1的驱动;利用两个互补高速三极管轮流开关工作实现了高压脉冲电子快门信号的驱动。   电荷耦合器件(CCD)是一种光电转换式图像传感器,它将
[电源管理]
基于KAI-01050 CCD<font color='red'>功率</font>电路的驱动方案
信号链基础知识:高速数模转换器的数字特性
TI 的 DAC34H84是一款 4 通道、16 位、1250 Msps 的 DAC。这样做的原因是,它是一种典型的高速数模转换器,拥有隔离输入和 DAC 时钟域的输入 FIFO、插值数字模块、精细频率分辨率数字正交调制、模拟正交调制器校正以及 sin(x)/x 校正(请参见图 1)。本文将逐一介绍这些特性的功能和作用。   第一个数字模块是插值模块,它负责增加 DAC 内部数字信号的采样速率。一般而言,利用两倍采样速率增加步骤,来实现插值。利用在输入采样点之间插入零来完成这项工作,其在 fIF 和 FIN – fIF 产生两个信号。通过一个数字低通滤波器后,去掉了位于 FIN – fIF 的第二个信号,只在 fIF 留有信号。
[模拟电子]
信号链基础知识:高速数模<font color='red'>转换器</font>的数字特性
功率MOSFET基础知识
什么是功率MOSFET?   我们都懂得如何利用二极管来实现开关,但是,我们只能对其进行开关操作,而不能逐渐控制信号流。此外,二极管作为开关取决于信号流的方向;我们不能对其编程以通过或屏蔽一个信号。对于诸如“流控制”或可编程开关之类的应用,我们需要一种三端器件和双极型三极管。我们都听说过Bardeen & Brattain,是他们偶然之间发明了三极管,就像许多其它伟大的发现一样。   结构上,它由两个背靠背的结实现(这不是一笔大交易,早在Bardeen之前,我们可能就是采用相同的结构实现了共阴极),但是,在功能上它是完全不同的器件,就像一个控制发射极电流流动的“龙头”—操作龙头的“手”就是基极电流。双极型三极管因此就是电流
[电源管理]
<font color='red'>功率</font>MOSFET基础知识
小米9:有探索版,无线充电功率大于15W
2月16日消息 小米9旗舰新机将于本月20日发布,官方近期在微博频繁曝光新机的一些信息,IT之家现在为大家整理一下关于该机最新的信息。 首先是小米集团联合创始人、中国区总裁、集团参谋长王川在回应网友问题时,暗示小米9的无线充电功率将大于15W。另外他还确认,小米9确实有探索版,并且称其是“地球上配置最高的手机”。 此外,继公布了小米9摄像头的参数后,雷军又发微博称,小米9用不锈钢的边框包裹,蓝宝石玻璃覆盖了全部三个摄像头,蓝宝石玻璃面积高达243平方毫米,完全不用担心镜头被划伤。 其它方面,小米9下巴宽度为3.6mm,搭载骁龙855,安兔兔跑分高达387851分。
[手机便携]
小米9:有探索版,无线充电<font color='red'>功率</font>大于15W
飞兆半导体庆祝成立50及10周年纪念
全球领先的高性能系统功率优化产品供应商飞兆半导体公司(Fairchild Semiconductor) 在2007年庆祝其在半导体行业悠久而丰富的历史。飞兆半导体始创于1957年,至今已有50年历史,故今年是极具纪念意义的一年。公司在初创时的目标,是开发和生产硅扩散晶体管及其它半导体器件。1958年飞兆半导体公司开发出了平面晶体管,并以此开创出一个崭新的行业。 2007年亦是新的飞兆半导体公司的10周年纪念。自1997年起作为业界首家半导体公司面向多个市场提供逻辑、存储和分立式技术,到今天的功率专家 The Power Franchise,飞兆半导体已经成为了在模拟、功率分立、光电子和信号路径等系统功率优化器件方面全球首屈一指的
[焦点新闻]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
最新医疗电子文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 医学成像 家庭消费 监护/遥测 植入式器材 临床设备 通用技术/产品 其他技术 综合资讯

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved