心电图是诊断心律失常的最可靠的途径,其它临床检查虽然也可以诊断某些心律失常,但是准确率不高。通过观察患者的心电图,其诊断准确率几乎可以达到100%。心电监护模块的功能就是实时地记录下病人的心电波形,并进行自动分析和处理,同时给出相应的结论。
随着数字信号处理技术和大规模集成电路工艺的发展,单片数字信号处理器的功能越来越强大,价格越来越低,越来越多地被应用到人们生产生活的各个领域。本文介绍一种基于
该心电监护模块是一个以美国
1 TMS320F206简介
TMS320F206(以下简称F206)是TI公司于1996年推出的一种性价比很高的16位定点DSP芯片,运算速度为40MIPS。F206体系采用改进的哈佛结构,将程序存储器和数据存储器的总线分开,以便最大限度地提高处理能力。其可寻址空间为224K字(64K字程序空间,64K字数据空间,64K字I/O空间,32K字全局空间),64K字程序空间中的前32K字可映射到F206片内集成的闪烁存储器(FLASH MEMORY)中,这样可以通过仿真器对F206进行在线的编程和擦写。F206片内具有4级流水线结构,其指令集专门对信号处理中常用的乘-加运算作了优化,支持单周期的乘法/累加指令;支持存储器块搬移指令,以便更好地管理程序和数据;支持基2的FFT位倒序检索寻址。
除支持高速运算以外,F206还具有众多的片上外设,主要包括:①软件可编程定时器;②用于程序、数据、I/O存储空间的软件可编程等待状态发生器,便于和低速器件接口;③片内振荡器和锁相环(PLL),用于时钟选择×1,×2,×4,÷2;④同步串口,便于和串行CODEC接口;⑤全双工的异步串口,便于和PC机通信。
2 硬件组成
该心电监护模块共有4路输入:两路心电信号ECG1和ECG2、一路体温信号TEMPI、一路呼吸信号RESP,采用分时采样的工作方式。由于呼吸信号和体温信号的频率远小于心电信号的频率,在确定采样率时就以心电信号为基准。经验表明,在做常规心电图时,要求系统的带宽为100Hz左右,根据Nyquist采样定理,采样频率必须不低于200Hz。考虑到一定的工作裕量,每个工作通道的采样率取250Hz,这样对4个通道而言,总的工作频率为1kHz。通道切换的工作由一片双向模拟开关CD4051来实现,将C、B、A控制端连接到TMS320F206的三根地址线上,通过I/O指令打开相应的模拟通道,进行信号的采样。
信号的采样和量化工作由一片ADS774完成。ADS774是美国Burr-Brown公司生产的12位逐次逼近型并行A/D
TMS320F206通过指令在XF引脚上产生一个宽度大于25ns的低电平脉冲,启动ADS774进行一次转换。启动后ADS774的STATUS引脚变为高电平,转换结束后ADS774数据线上的数据有效,此时其STATUS引脚跳变回低电平,通过这个电平跳变触发TMS320F206的INT1外部中断,将12位转换数据读入数据存储器。
由于TMS320F206片内的数据存储空间有限,为保存大量的采样数据和运算的中间结果,需增加外部数据存储器;同时为了在调试程序时能够设置断点和进行单步操作,也需要增加外部程序存储器。我们采用了4片日立公司的8位SRAM HM62256-10,两两组成16位的程序存储器和数据存储器,分别用F206的PS和DS信号进行片选。HM62256-10的典型存取时间为100ns,而TMS320F206的指令周期为50ns。为节省硬件等待电路的开支,利用了TMS320F206片内的可编程软件等待状态发生器产生两个等待状态,从而满足存储器的操作时间要求。利用TMS320F206片上集成的全双工异步串口,可以实现心电模块和PC机的通信。但是RS232电平和TTL电平不兼容,我们使用了一片电平转换芯片MAX202,它采用+5V单电源供电,使用时只需加几个电容,便能完成两种电平的转换。为防止数据在传输过程中受到干扰,在输入输出端都加上光电耦合器。
[page]
R波的精确定位是心电监护模块的一个重要功能,它关系到后面进行心率计算及心律失常分析结果的正确性。一个正常人完整的的心电波形由P、Q、R、S、T五个部分组成,其中R波和T波的幅值相对较高。心率计算通常是根据心电波形中R波的间距来推算得到。但在少数异常波形中,T波的幅值会超过R波,如果把T波误判为R波来进行心率计算,则会产生很大的误差。通过对大量的心电信号进行频谱分析,发现R波通常位于0~33Hz的频率范围内,而T波位于0~9Hz的频率范围内。为了在心率计算时消除T波可能引起的干扰,我们设计了一个有源带通滤波器,其中心频率f0=12.867Hz,带宽B=f0/Q=5.629Hz,下限截止频率f1=10.3565Hz;上限截止频率f2=15.9855Hz。标准心电信号通过该带通滤波器前后的波形如图3所示。可以看出,频率相对较低的T波有很大的衰减而R波基本保持不变。
3 软件设计
该心电监护模块的软件由两部分组成。一是运行在TMS320F206片内FLASH MEMORY中的系统监控程序,二是运行于PC机端的图形界面用户程序。前者对实时性的要求较高,为提高运行效率,采用TMS320C2XX汇编语言编写,经汇编、链接后在外部程序RAM中调试,调试成功后烧写到TMS320F206的FLASH中。它主要由如下几个功能模块组成:①系统初始化模块。完成RAM、ADS774、中断以及定时器等外设的初始化设置;②定时采样模块,进行四路信号的分时采集,经预处理后存入数据RAM;③心率、呼吸率计算和体温插值运算模块;④512点心电信号的基2 FFT运算模块;⑤异步串行通信模块,实现与PC机之间的通信协议。
下面简要介绍一下心率计算模块的算法。设dR-R是相邻两个R波的间距(即两个R波之间有dR-R个采样点),由于心电通道的采样率为250Hz,所以250÷dR-R即为一秒钟内R波的个数,60×250÷dR-R即为一分钟内的心跳次数。因此关键在于对R波进行准确定位。算法流程如图4所示。其中F I 为数据RAM中最新的1024个心电信号值,一次运算后, FIFO即被刷新,准备进行下次运算。 图5显示了R波的定位结果,"X"标识出查找到的R波最高点。
为了验证这个算法的正确性,我们以BIO-TECH心电信号仿真器产生的标准心电信号作为测试信号,发现它对正常信号和大部分异常信号均能准确地测出心率。
4 模块调试过程
整个心电模块的调试过程分三个阶段:①硬件调试,确保
调试结束后,用仿真器的FLASH烧写程序将目标代码通过JTAG口下载到TMS320F206中去,实现整个系统的脱机运行。
本系统已经达到设计任务书规定的要求,但还具有进一步扩展的潜力。软件方面,由于采用模块化设计,可以方便地增加新的功能模块,如自相关处理等;在硬件方面,TMS320F206和外围芯片的接口逻辑目前是用小规模集成电路实现,今后可改用PLD或FPGA芯片编程实现接口逻辑,减少芯片的数量,提高系统的可靠性。
上一篇:MC9S08JM16:血糖监视仪(BGM)解决方案
下一篇:英开发出微型非接触式心电检测仪
推荐阅读最新更新时间:2024-03-16 11:39
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况