示意图显示了植入小鼠背部的封装DART工程细胞,DART系统可用于治疗Ⅰ型糖尿病小鼠。图片来源:《自然·代谢》
据《自然·代谢》31日发表的一项生物技术突破称,科学家实现了用电流在改造的人类细胞里激活基因表达。这是一项以糖尿病小鼠为模型的概念验证研究,实验系统可激发工程改造的人类细胞产生胰岛素。这一成果有望带来一种能编程活细胞的新型可穿戴设备。
可穿戴电子设备被用于监控健康参数,如体力活动和血糖水平,但它们现在还不能用于直接改变基因活动。而能控制基因表达的设备将极大助力医疗干预,激活特定基因表达或使其沉默,例如增加体内特定激素的产生。
瑞士苏黎世联邦理工大学团队此次对可以用电流控制的人类细胞基因表达做了概念验证。他们开发了一个“电遗传”界面,称之为DC-激发调控技术(DART),可以用电池直流电供能,并设计了一个人类细胞内在感应系统,激活选定基因。这个系统可侦测到电极产生的离子所产生的活性氧(一类容易对其他分子做出反应的分子)。
团队随后使用这一技术改造人类细胞,经电刺激激活胰岛素基因的表达,随后将细胞放入凝胶胶囊在小鼠中测试。凝胶胶囊植入5只Ⅰ型糖尿病雄性小鼠的背部,研究人员每日一次用针灸针向其输送4.5伏的电刺激10秒,发现这刺激了胰岛素产生,恢复了正常血糖水平。
研究团队表示,这一电遗传界面未来或有助于开发以基因和细胞为基础的新疗法。
让活细胞“住”在可穿戴设备里,为生命健康创造条件,这一创新开辟了精准医疗的一条新路。长久以来,我们用化学物质和物理疗法刺激人体,希望它向期待的方向转化,但人体环境因素复杂,实验室里的反应未必能够如愿在身体里复制。现在我们精确地刺激一小部分细胞,可操控性就大大增强了。相信未来很多疑难杂症患者将受益于此。
引用地址:
电流激发工程化细胞产生胰岛素 向可穿戴活细胞编程设备迈进一大步
推荐阅读最新更新时间:2024-10-24 04:14
电流激发工程化细胞产生胰岛素 向可穿戴活细胞编程设备迈进一大步
示意图显示了植入小鼠背部的封装DART工程细胞,DART系统可用于治疗Ⅰ型糖尿病小鼠。图片来源:《自然·代谢》 据《自然·代谢》31日发表的一项生物技术突破称,科学家实现了用电流在改造的人类细胞里激活基因表达。这是一项以糖尿病小鼠为模型的概念验证研究,实验系统可激发工程改造的人类细胞产生胰岛素。这一成果有望带来一种能编程活细胞的新型可穿戴设备。 可穿戴电子设备被用于监控健康参数,如体力活动和血糖水平,但它们现在还不能用于直接改变基因活动。而能控制基因表达的设备将极大助力医疗干预,激活特定基因表达或使其沉默,例如增加体内特定激素的产生。 瑞士苏黎世联邦理工大学团队此次对可以用电流控制的人类细胞基因表达做了概念验证。他们
[医疗电子]
细胞活体机器人与人工智能结合或将制造真正“活机器人”
美国研究小组手动塑造了这些活体机器人,体长大约1毫米,能够按照计算机程序设计的路线移动,还能负载一定的重量,携带药物在人体内部移动,也能在受污染的海域进行人类无法完成的操作。 据报道,伴随着我们对细胞如何成形和生长过程了解得越多,关于基因组蓝组的构想就显得越不充分。目前,科学家指出,通过将由细胞构成的活体机器人与人工智能的探索能力结合在一起,就有可能制造出一种有目的的“活机器人”! 胚胎在人体中哪个位置?胚胎形态发生(Morphogenesis),是指由胚胎形成的身体,曾经该理论非常神秘,以至于学者们曾猜测身体孕育之初是以微小身体结构存在,17世纪,荷兰显微镜学家尼古拉·哈特索埃克(Nicolaas Hartsoe
[机器人]
植有活脑细胞培养的神经元 拥有“人类智能”的全球首款有“思想”的机器人诞生
据外媒报道,日本研究人员研发出了一款拥有类似大脑神经元的机器人,目的是教它学会“像人类一样思考”。 据悉,该机器人与实验室培养的人工神经元相连接。比如,当人工神经元受到电波刺激时,机器接收到信号后会不断地纠偏、躲开障碍物,以此往复,最终成功穿过简制的迷宫。 与人工神经元连接的机器人正在穿越简易迷宫。图据网络 东京大学的研究人员称,在全球范围内,这是首次使用从活脑细胞中培育出的人工神经元来“指挥”机器人完成任务。这一突破性进展有利于加快推出类脑机器人,帮助人类解决更复杂的任务。 神经元,也称神经细胞,是神经系统的基本要素之一。它们感知环境变化,传递刺激信息,指挥人类作出反应。例如手指靠近蜡烛时,相关各级神经元开始发挥作用:感知到烫手
[机器人]
活细胞作传感器的电子胶囊 探查胃肠道疾病
美国研究人员首次使用经基因改造的活细胞制作微型 传感器 ,进而制成胶囊,用于探查胃肠道疾病。 麻省理工学院研究人员首先用基因工程改造大肠杆菌的一种无害菌株,使它遇到血液中的亚铁血红素时发光;再将数以百万计这种菌株填入特制传感器中,覆以半透膜。安装在菌株下的光电晶体管可以测量细菌细胞发出的光量,把信息传递给微处理器,由后者把信息无线发送至附近计算机或智能手机。研究人员开发一款“安卓”系统应用程序,可以分析接收到的信息。 这个圆筒状传感器长大约3.8厘米,运行时仅需大约13微瓦特电量。传感器配备的电池为2.7伏特,可供传感器连续运行一个半月左右。 研究人员在由最新一期《科学》杂志刊载的文章中写道,实验显示,这种胶囊进入猪的体内后,能准
[医疗电子]
美研究:活细胞作传感器 电子胶囊探肠病
美国研究人员首次使用经基因改造的活细胞制作微型 传感器 ,进而制成胶囊,用于探查胃肠道疾病。 麻省理工学院研究人员首先用基因工程改造大肠杆菌的一种无害菌株,使它遇到血液中的亚铁血红素时发光;再将数以百万计这种菌株填入特制传感器中,覆以半透膜。安装在菌株下的光电晶体管可以测量细菌细胞发出的光量,把信息传递给微处理器,由后者把信息无线发送至附近计算机或智能手机。研究人员开发一款“安卓”系统应用程序,可以分析接收到的信息。 这个圆筒状传感器长大约3.8厘米,运行时仅需大约13微瓦特电量。传感器配备的电池为2.7伏特,可供传感器连续运行一个半月左右。 研究人员在由最新一期《科学》杂志刊载的文章中写道,实验显示,这种胶囊进入猪的体内后,能准
[医疗电子]
科学家研制出可以指挥活细胞的“生物晶体管”
完全生物化的计算机已越来越接近现实。斯坦福大学的科学家们今天宣布,他们已经制作出了一种完全由遗传物质打造的新型晶体管——计算机(以及几乎其它所有现代电子设备)最基本的组成部分——并能在细菌活体内工作。在某些方面,这种新型生物晶体管比其无机"同行"实际上还要好。研究人员称,在未来,他们的设备将有能力在生物细胞内构建功能齐全的计算机——无论是动物还是植物。 这种新设备叫做"命令解释器"(transcriptor)。它是在活细胞DNA分子里很微小的一段。斯坦福的研究人员通过基因改造,像是电流一样,控制了另一重要分子(RNA)的流动。RNA负责细胞内DNA翻译指令的一个自然过程,通过控制它,科学家们就可指挥整个活细胞。 参与研究的一名科
[医疗电子]
美科学家将活细胞DNA制成硬盘可储存信息
科学家将DNA制成“活硬盘”,就如同电影《捍卫机密》中的情节一般(资料图)
许多科幻剧情中将数据储存在活细胞中的想法,如今已经变成现实。据英国《每日邮报》5月23日报道,美国斯坦福大学的科学家已经找到将DNA转变成“活硬盘”的方法,能够随意在活细胞DNA中存储或删除数据。
斯坦福大学学者杰罗姆·邦尼特(Jerome Bonnet)说:“经过3年时间750多次尝试,我们才成功找到一种方法,可以在活细胞DNA中进行重复编码、储存以及删除数据信息。”这些信息将以DNA密码的方式储存,可以被任意重写或删除,因此可用于研究细胞衰老问题,甚至可在细胞癌变之前将其“关闭”。
细胞就像一台人体中的微型计算机,对计算机学
[医疗电子]
科学家发明活细胞超分辨率荧光成像技术
作为第一位获美国麦克阿瑟基金会“天才奖”的华人女科学家,庄小威教授获得了许多重要成果,尤其是在生物物理显微成像领域,近期庄小威教授发表了题为“Fast, three-dimensional super-resolution imaging of live cells”的论文,介绍了其研究组在超分辨率细胞成像研究方面的最新进展——活细胞超分辨率荧光成像技术,这一研究成果公布在《自然—方法学》(Nature Methods)在线版上。 传统光学显微镜受限于光的波长,对于200nm以下的物体无法分辨。虽然电子显微镜可以达到纳米级的分辨率,但电流容易造成样品破坏,因此能观测的样本也相当有限。分子生物学家虽然可以把若干目标蛋白质贴
[医疗电子]