某些分子受到光刺激会强烈振动,美国莱斯大学科学家发现了利用分子这一性能来摧毁癌细胞的新方法。发表在《自然·化学》上的该项研究显示,该方法对实验室培养的人类黑色素瘤细胞的有效性达到99%,并且半数的黑色素瘤模型实验鼠经治疗后不再患癌症。
西塞隆·阿亚拉-奥罗斯科是莱斯大学图尔实验室的研究科学家,也是该研究的主要作者。
图片来源:杰夫·菲特罗/莱斯大学
阿亚拉-奥罗斯科正在使用共焦显微镜。
图源:杰夫·菲特洛/莱斯大学
莱斯大学化学家詹姆斯·图尔表示,这是全新一代的分子机器,称之为分子“手提钻”。他的实验室此前曾使用具有光激活的桨状原子链的纳米级化合物,该原子链不断沿同一方向旋转以钻穿感染性细菌、癌细胞和耐药真菌的外膜。
与诺贝尔奖获得者伯纳德·费林加的纳米级分子马达钻头不同,分子“手提钻”采用了完全不同的、前所未有的作用机制。它们的机械运动速度比费林加型电机快100万倍以上,并且可以用近红外光而不是可见光来激活它们。
近红外光能比可见光更深入地穿透身体,进入器官或骨骼而不损伤组织。近红外光可深入人体10厘米,而用来激活纳米钻的可见光的穿透深度仅为半厘米。
这种“手提钻”其实是氨基花青分子,是一类用于医学成像的荧光合成染料。研究发现,该分子的原子在受到近红外光刺激时可一致振动,形成等离子体,从而导致癌细胞的细胞膜破裂。
研究还发现,该分子等离子体一侧有臂。该臂对等离子体运动虽然没有贡献,但它有助于将分子锚定到细胞膜的双层脂质上。
研究人员表示,这是第一次以这种方式利用等离子激元来激发整个分子,并实际产生用于实现特定目标的机械作用——撕裂癌细胞的膜。这项研究是在分子尺度上利用机械力治疗癌症的一种创新性方法。
想象下这个“手提钻”,在光的激发下能够定向旋转,这种旋转运动可以破坏它锚定的双层脂层及细胞膜,从而实现摧毁癌细胞的目的。而除了对付癌细胞外,它还可以钻穿微生物的膜,可让原本无效的药物进入细胞。这意味着,人们可以让分子钻头作前锋,在细菌表面打个孔,再让抗生素穿过细菌的机械屏障进去杀死对手,从而帮助人们克服抗生素耐药性这个棘手难题。
引用地址:
分子“手提钻”利用振动撕裂癌细胞,对实验室培养的人类黑色素瘤细胞疗效达99%
推荐阅读最新更新时间:2024-10-25 07:15
分子“手提钻”利用振动撕裂癌细胞,对实验室培养的人类黑色素瘤细胞疗效达99%
某些分子受到光刺激会强烈振动,美国莱斯大学科学家发现了利用分子这一性能来摧毁癌细胞的新方法。发表在《自然·化学》上的该项研究显示,该方法对实验室培养的人类黑色素瘤细胞的有效性达到99%,并且半数的黑色素瘤模型实验鼠经治疗后不再患癌症。 西塞隆·阿亚拉-奥罗斯科是莱斯大学图尔实验室的研究科学家,也是该研究的主要作者。 图片来源:杰夫·菲特罗/莱斯大学 阿亚拉-奥罗斯科正在使用共焦显微镜。 图源:杰夫·菲特洛/莱斯大学 莱斯大学化学家詹姆斯·图尔表示,这是全新一代的分子机器,称之为分子“手提钻”。他的实验室此前曾使用具有光激活的桨状原子链的纳米级化合物,该原子链不断沿同一方向旋转以钻穿感染性细菌、癌细胞和耐药真菌的外
[医疗电子]
新硅基电池提升分子太阳能储能系统效率
为提高太阳能的利用率,破解太阳能生产间歇性这一难题,西班牙科学家领导的国际研究团队,成功开发出首款硅基太阳能电池与创新性分子太阳能储能系统(MOST)相结合的设备。最新研究有望改善太阳能捕获及储存技术。相关论文发表于最新一期《焦耳》杂志。 这种混合装置可以改善太阳能捕获及储存技术。图片来源:upc官网 太阳能发电在理论上是一种可持续能源,但其发电量受天气变化和昼夜交替的影响,具有间歇性的特点。为了填补能源生产和消耗之间的差距,确保电力供应,研发高效的储能系统至关重要。 在最新研究中,来自西班牙加泰罗尼亚理工大学等机构的科学家,巧妙地让硅基太阳能电池与MOST系统“牵手”成功。这一混合装置创下了分子太阳能存储效率新纪录,太阳
[新能源]
基于量子干涉的单分子晶体管面世,可用于制造更小更快更节能的新一代电子设备
英国和加拿大科学家组成的一个国际研究团队开发出一种新型单分子晶体管,利用量子干涉来控制电子流。这一成果为在电子设备中使用量子效应带来了新的可能性,有望催生比现有设备更小、更快、更节能的新型晶体管,以制造新一代电子设备。相关论文发表于25日出版的《自然·纳米技术》杂志。 研究示意图 图片来源:《自然·纳米技术》杂志 晶体管是现代电子技术的基本组成部分,用于放大和切换电信号,广泛应用于从智能手机到宇宙飞船等各种设备和器件上。但传统晶体管制造方法已到达极限。随着晶体管越来越小,其效率越来越低,且容易受到误差的影响。由于存在量子隧穿效应,即使晶体管关闭,电子也会从中泄漏。 鉴于此,研究人员正在探索新型开关机制,希望能消除这种影响。在
[半导体设计/制造]
科学家捕获合成DNA原子视图,有助研究可治疗疾病的“分子剪刀”
美国西弗吉尼亚大学研究人员实现了在原子水平上观察合成DNA,从而了解了如何改变其结构以增强其剪刀功能。更多地了解这些合成DNA反应,或是未来解锁医学新技术的关键。研究结果发表在最近出版的《自然》子刊《通信·化学》上。 原子细节可以为人们提供一个路线图,去构建和改进可广泛适用于医疗界的最新技术,理论上,其可应用于视网膜变性或癌症等疾病的治疗。 此次研究中使用的合成DNA,亦称为DNA酶。与人类DNA不同,DNA酶在实验室中创建,生产成本低廉且能够催化化学反应。研究人员表示,人们通常认为DNA作为人类遗传信息的存储单元是惰性的,然而,在实验室中进化出的某些类型的DNA违背了传统规则。这些DNA可折叠成复杂的形状,能够执行一系列效果显著
[医疗电子]
伍伦贡大学引入新型分子轨道相互作用 提高锂离子电池正极材料的稳定性
据外媒报道,由伍伦贡大学(University of Wollongong)超导与电子材料研究所负责的国际团队证实,通过引入新型分子轨道相互作用,可以提高锂离子电池正极材料的结构稳定性。 (图片来源:伍伦贡大学) 对 电动汽车 行业来说,为高性能锂离子电池生产更好的正极材料,是主要挑战之一。在此项研究中,研究人员利用澳大利亚核科学技术组织(ANSTO)的设施和技术,证明在富有前景的正极材料尖晶石LiNi0.5 Mn1.5 O4(LNMO)中掺杂锗,能够明显增强氧和金属阳离子之间4s-2p轨道的相互作用。“相对来说,4s-2p轨道并不常见。但研究人员在文献中发现了一种化合物,其中锗的价态为+ 3,使电子构型( 3d10
[汽车电子]
研华工业显示触摸屏提升新型冠状病毒的分子诊断测试效率
项目背景 根据美国食品和药物管理局的资料,COVID-19测试主要有两种类型--核酸扩增测试(NAATs)和抗原测试。这两种类型的测试都可以显示一个人目前是否感染了SARS-CoV-2(新型冠状病毒),即引起COVID-19的病毒。NAAT测试是一种分子测试,其中包括PCR(聚合酶链反应)测试。这些测试被认为比替代的抗原测试更准确。 项目需求 通过监测全球流通的SARS-CoV-2(新型冠状病毒)菌株,科学家能够识别新的突变操作,并直接在显示屏上显示操作指令,以提高效率。 研华工业显示解决方案 研华提供的新系列触控面板具有防指纹表面处理和创新的触控功能。为了适应每个用户的特定场景,触摸显示器需要提供直观
[医疗电子]
湖南大学团队在“存算一体”分子动力学高速芯片领域取得进展
近日,湖南大学电气与信息工程学院刘杰教授课题组自主研制出“存算一体”非冯·诺依曼类脑芯片架构,用于加速分子动力学高性能科学计算。研究成果发表在《npj Computational Materials》期刊。 据悉,刘杰教授团队自主设计“存算一体”的类脑芯片架构,并基于FPGA研制出了基于新型非冯·诺依曼芯片架构的分子动力学计算系统“NVNMD”(第一版),实现了从传统冯·诺依曼芯片架构向新型非冯·诺依曼芯片架构的“范式转移(paradigm shift)”。NVNMD的核心计算模块中,存储单元和计算单元紧密融为一体(即“存算一体”),避免了频繁的数据搬运,极大缓解了计算中的“存储墙”“功耗墙”瓶颈。实测表明,相较主流CPU、GP
[手机便携]
研究人员现可在分子水平上测量石墨烯及其他2D材料的“湿润性”
材料的润湿性是液体跟固体表面保持接触的能力,它跟亲水性成正比,跟疏水性成反比。它是固体最重要的特性之一,了解不同基材的润湿性对各种工业应用至关重要,如海水淡化、涂层剂和水电解质。 到目前为止,大多数关于基质润湿性的研究都是在宏观层面进行的。润湿性的宏观测量通常是通过测量水接触角(WCA)来确定的,水接触角是水滴相对于基材表面的角度。然而在分子水平上准确测量基材和水之间的界面所发生的事情目前是非常困难的。 目前使用的微观测量技术如基于反射的红外光谱或拉曼光谱则都无法有选择地观察界面水分子。因为在整个液体中,水分子的数量远远大于与表面接触的分子,界面水分子的信号则会被液体中的水分子的信号所掩盖。 为了克服这一限制,韩
[半导体设计/制造]