基于AD7705的在线激光功率检测系统设计

最新更新时间:2009-06-02来源: 现代电子技术关键字:AT89S51单片机  AD7705模/数转换器  信号采集  在线检测 手机看文章 扫描二维码
随时随地手机看文章

  0 引 言

  利用单片机和AD7705模/数转换器结合光电检测技术而设计了一种在线激光功率检测系统。该系统特点是原理简单,造价低廉,智能操作,方便实用,误差小,精度高。它采用单片机自动采集光功率信号,然后对采集的数据进行处理。由于与单片机结合,实现了检测过程的智能化,因而操作方便。

  l 系统组成及原理

  设计要求测量波长范围宽(O.5~10μm),功能稳定,响应迅速,工作环境适应性强,这对传感器的选择,A/D转换器的精度、速度以及单片机都提出了严格的要求。经方案论证,设计的系统原理见图1所示。

设计的系统原理

  该系统由光电传感器电路、模/数转换电路、单片机控制电路以及显示电路4部分组成。

  1.1 信号采集电路设计

  系统设计的基础是光电传感器电路。对于传感器的选择,应考虑探测波长范围以及功率两个方面,可选用与待测波长相对应的光电传感器。由于要求的波长范围为0.5~10μm,功率范围为0~100 W,所以,一般的光电传感器无法满足要求。

  这里采用一种“抽样检测”的方法,即针对某一特定波长(该设汁中为1.064 μm)的激光器进行测量,设计出一种通用电路,只要改变传感器型号即可测量其他波长范围的激光输出功率。采用2DU1系列硅光敏二极管作为探测器。光敏二极管在受到光照时,会产生一个与照度成正比的小电流,因此是很好的光电传感器,且具有良好的线性特性,不仅响应速度快,灵敏度较高,而且噪声低,稳定可靠。实验时光电传感器接收一部分光功率信号,将其测量结果与精准的激光功率计测量结果进行比较,得出比例系数,进而利用软件编程得到最终结果。该方法原理简单,测量方便,造价低廉,方便实用,误差小,精度高,可大大降低对传感器的要求。光敏二极管在电路中必须处于反向偏置,如图2所示。设计中将光敏二极管反偏接至AD7705的通道1,即接到7脚和8脚上,同时光敏二极管的环极接+5 V电压,偏置电阻为6.5 kΩ。

光敏二极管工作电路

  1.2 模/数转换电路设计

  传感器的输出一般是毫伏级的微弱模拟信号,温度特性差,易受干扰。传统的电路设计方法是在A/D转换之前增加一级或多级高精度的放大器,这样不但增加了成本和系统复杂性,而且在监测中也会出现外部低频(如工频)干扰和放大器漂移等问题。该设计中采用AD7705作为模/数转换器,它顺应了集成化、高精度、多功能、自动补偿和自动校准的发展要求,集放大、滤波和A/D转换单元于一体,只需接晶体振荡器、精密基准源和少量去耦电容即可连续进行A/D转换。

  AD7705利用∑-△转换技术最高可实现16位无误码传输,能将从传感器接收到的很微弱的输入信号直接转换成串行数字信号输出,是用于智能系统、微控制器系统和基于DSP系统的理想产品。AD7705与89S51单片机的接口电路如图3所示。

AD7705与89S51单片机的接口电路

  AD7705采用SPI/QSPI兼容的三线串行接口,大大节省了I/O口。第一种方法是SCLK接AT89S51的P2口中未用的管脚,数据输入、输出端DIN,DOUT一起接P2口中未用的另一管脚。这种做法的代价是时间开销较多,不适用于时效性要求较强的系统;本设计采用第二种方法,即监控硬件DRDY引脚的状态,以决定数据寄存器是否被更新,硬件DRDY引脚的输出与通信寄存器DRDY位同步,DRDY引脚一旦变成低电平,表明数据寄存器数据已经更新,可以读取。DRDY输出引脚接至单片机的INTO可实现中断或者查询方式的监控。SCLK接AT89S51的同步脉冲输出端TXD(P3.1),为传输数据提供时钟。AD7705的数据输入、输出端DIN,DOUT一同接AT89S51的RXD(P3.O),并接一个10 Ω的上拉电阻。在这种连接方式下,对AD7705数据的读取可按51系列单片机串行口的工作方式0完成。

  需要说明的是在读写操作模式下,AT89S51的数据输出为LSB在前,而AD7705希望MSB在前,所以数据读写之前必须倒序。

  1.3 数据处理与显示电路设计

  数据处理控制部分采用AT89S51单片机,这是系统设计的核心。

  AT89S51是低功耗、高性能CMOS 8位单片机,既可在线编程(ISP),也可用传统方法编程。与MCS-51产品指令系统完全兼容,性价比高,可灵活应用于各种控制领域。

  显示部分该设计采用四位数码管,程序控制扫描方式。其中,PO口作为段选;P1.0~Pl.3作为位选。

  2 系统软件设计

  2.1 基于Keil Cx51的软件设计思想

  程序设计思想是首先上电/复位AD7705,配置AT89S51单片机的串行接口,然后将AD7705的通道1初始化,注意读写数据之前必须调用重新排序子程序。查询DRDY引脚,如果为低电平,则读通道数据寄存器,把数据转化为电压值,再调显示子程序,调延时,做电压转换为功率值的数据处理。返回,继续采集数据,查询DRDY,显示,直到结束。主程序流程图如图4所示。

主程序流程图

  2.2 AD7705的初始化配置及对寄存器操作子程序

  在使用AD7705之前,首先要对所有寄存器进行设置和初始化。系统需确定AD7705芯片的主要参数具体设计:主时钟取FCLK=2.457 6 MHz,输入通道选择单极性,数据更新速率为50 Hz。由于AD7705输入基准电压等于+5 V,输入负端接地,正端最大输入幅度+l_3 V,故增益可以选择4。当参数设置完毕以后,写入设置寄存器位MD1和MDO分别为0和1,完成系统自校准。在设置参数之前,首先对通信寄存器进行一次写操作,以决定下一个是什么样的寄存器和什么样的操作内容,再进行下一步的参数写入。与初始化以后,单片机就可以从模/数转换器中读数据,读取数据之前必须确定数据寄存器的状态。通过查询DRDY引脚,如果DRDY引脚处于低电平,则数据已经转换完成,可以读取。AD7705的初始化配置及对寄存器操作程序流程图如图5所示。

AD7705的初始化配置及对寄存器操作程序流程图

  A/D转换器输出的是16进制数据,需要转换为电压值输出。

V=5.0(data-out/65 536.0)

  得到的电压值还得转化为功率显示。通过实验在ND:YAG激光器上测量了不同激励电流下的系统输出电压,并实测了经精密激光功率计LOGO检测到的数据,得出两者之间的线性关系为P=50V。

  A/D转换器的子程序如下:

程序

程序

  3 系统测试

  3.1 测试结果

  通过将设计产品与精密激光功率计的实测结果进行比较发现,系统稳定性和精度较高,误差很小。实测结果如表1所示。其中,功率值1为LOGO激光功率计所测值;功率值2为所设计设备的测量值。

实测结果

  3.2 误差分析

  在实际应用中由于强电磁场,系统中的闪烁信号干扰或者软件错误会造成接口迷失,一旦接口迷失,数据也无法从中正常读出。因此,在系统软件设计中应当定时复位系统接口。数据读出速率应不超过预设输出寄存器的更新速率。由于AD7705的分辨率太高,而要求的噪声电平又太小,所以必须注意接地和电路布线。

  4 结 语

  通过以上讨论,介绍了在线激光功率检测系统的设计原理。它利用AT89S51作为测量控制核心,采用C51作为编程语言,用以控制AD7705芯片的工作过程,使用光敏二极管作为光电传感器,AD7705内置的数字滤波器可有效抑制工频干扰,而丰富的校准功能可消除偏移、增益以及传感器的漂移误差。经实际测量验证,性能稳定可靠,响应迅速,工作环境适应性强,能实现对激光功率的实时检测。

关键字:AT89S51单片机  AD7705模/数转换器  信号采集  在线检测 编辑:金海 引用地址:基于AD7705的在线激光功率检测系统设计

上一篇:Vishay 推出新款 ACAS 0606 AT
下一篇:便携式产品设计中模拟开关的选择要点

推荐阅读最新更新时间:2023-10-12 20:15

基于单片机信号采集系统设计方案
信号采集设备广泛使用于机器健康诊断系统中用来记录、监视和诊断。机器情况数据经常由非便携式或者带导线的设备收集。对于一些重要的应用,比如危险或者遥远的地点,尤其是在航空上,提供可以方便地携带或者读取的设备是必要的。另外,机器健康诊断尤其是机床振动信号诊断经常处理低频信号,这值得关注。   本文研究一种微控制器为基础的信号采集系统,以满足信号采集的低成本和灵活模式。开发系统的主要硬件包括一台微型计算机、一个以PIC18F1320为基础的微控制器电路板以及串行通讯链接设备。EEPROM 24LC32A被用来进行存储器扩展。微型计算机运行控制程序。一旦用户在微型计算机界面上决定采样输入,信息便通过RS-232端口送往微控制器。微
[单片机]
基于<font color='red'>单片机</font>的<font color='red'>信号采集</font>系统设计方案
音频信号采集与AGC算法的DSP实现
引言 电台等由于其自办频道的广告、新闻、广播剧、歌曲和转播节目等音频信号电平大小不一,导致节目播出时,音频信号忽大忽小,严重影响用户的收听效果。在转播时,由于传输距离等原因,在信号的输出端也存在信号大小不一的现象。过去,对大音频信号采用限幅方式,即对大信号进行限幅输出,小信号不予处理。这样,仍然存在音频信号过小时,用户自行调节音量,也会影响用户的收听效果。随着电子技术,计算机技术和通信技术的迅猛发展,数字信号处理技术已广泛地深入到人们生活等各个领域。其中语音处理是数字信号处理最活跃的研究方向之一,在IP电话和多媒体通信中得到广泛应用。语音处理可采用通用数字信号处理器DSP和现场可编程门阵列(FPGA) 实现,其中DSP实现方
[嵌入式]
基于ADSP-TS201S的声雷达信号采集系统
  在声雷达系统中,发射机定向发出不同频率的声信号,随后接收不同距离上的回波信号,利用回波中频率的偏离可以测定风速、风向随高度的变化。系统的多通道采样数据量接近500k×32b/s,一帧时间(约2.7s)内要求处理1100兆条指令,其大数据量和要求实时处理的特性对信号采集处理系统的设计提出了很高的要求,本文介绍的基于美国模拟器件公司的DSP ADSP-TS201S和ADC AD7864的信号采集系统能够满足这些要求。   系统的设计   1 系统功能模块划分   声雷达信号采集系统主要由信号采集、信号处理、电源和时钟四部分组成,如图1所示。信号采集模块由CPLD和4片ADC组成,负责完成A/D转换;转换后的数据
[嵌入式]
音频信号采集与AGC算法的DSP实现
   引言   电台等由于其自办频道的广告、新闻、广播剧、歌曲和转播节目等音频信号电平大小不一,导致节目播出时,音频信号忽大忽小,严重影响用户的收听效果。在转播时,由于传输距离等原因,在信号的输出端也存在信号大小不一的现象。过去,对大音频信号采用限幅方式,即对大信号进行限幅输出,小信号不予处理。这样,仍然存在音频信号过小时,用户自行调节音量,也会影响用户的收听效果。随着电子技术,计算机技术和通信技术的迅猛发展,数字信号处理技术已广泛地深入到人们生活等各个领域。其中语音处理是数字信号处理最活跃的研究方向之一,在IP电话和多媒体通信中得到广泛应用。语音处理可采用通用数字信号处理器DSP和现场可编程门阵列(FPGA) 实现,其中D
[安防电子]
基于虚拟仪器技术的高速多通道信号采集系统设计
1986年,美国国家仪器公司首先提出虚拟仪器的概念。虚拟仪器通过软件将计算机硬件资源(如微处理器、内存、显示器等)与仪器硬件(如A/D、D/A、数字I/O、定时器、信号调理等)有机的融合为一体,大大缩小了仪器硬件的成本和体积,并通过软件实现对数据的显示、存储以及分析处理。它的最大特点是以软件为仪器的主要组成部分,因此NI提出了“软件就是仪器”的概念。这是虚拟仪器技术核心强调的测试理念。 爆炸应力波测试要求系统同时测试64通道爆炸应力波数据,爆炸应力波频率高,数据量大,并且需要多通道数据处理分析,其中多路并行的数据采集系统和先进的信号预处理技术是测试的关键技术。通过对传统的测试仪器调研,这些仪器不仅可测试的通道数少,采样点数少
[测试测量]
基于虚拟仪器技术的高速多通道<font color='red'>信号采集</font>系统设计
一种智能化的温湿度智能控制系统设计
  温、湿度控制广泛应用于人们的生产和生活中,对于农产品种子来说,对环境温度与湿度有着比较严格的要求。人们通常使用温度计、湿度计来测量仓库的温度和湿度,通过人工加热、加湿、通风和降温等方法来控制仓库的温、湿度,这种方法不但控制精度低、实时性差,而且操作人员的劳动强度大。同时温度与相对湿度的大幅度变化可能导致种子大范围腐烂或者影响种子的发芽率,从而带来极大的经济及财产损失。因此,保持适宜的仓库温度、湿度对保证农产品种子存储质量十分重要。   目前市场上的各种温度控制设备大多只能根据简单的温度变化规律制定控制算法,系统扩展性较差。本系统采集了种子仓库所在地一年的温度变化规律,并使用能适应季节变化、节省能源的模糊控制算法, 结合A
[单片机]
一种智能化的温湿度智能控制系统设计
基于CCD技术的非接触在线检测仪设计
1.引言 检测技术是一门应用非常广泛的技术。在许多领域都会对各种加工件、各种运动物体进行检测,以保证产品的合格率和生产、生活的安全性。传统的检测方法有人工检测,也有用机械式、光学式或电磁式检测仪器进行的检测。尤其是人工检测全凭实际工作经验,若部件结构复杂,不但增加了工人的劳动强度,而且精度、效率也会随之降低,既不能完成非接触检测,又不能实现在线检测,同时还增加了检测时给工作人员所带来的危险性。因此,随着科技的日新月异,势必要有一种更加完美的检测技术,那就是CCD 技术。 在此,以一个基于CCD 在线非接触检测的实例——《拉升钢丝绳直径的在线检测仪》对CCD 技术进行 一下探讨。 2.系统组成 整个检测系统由照明系
[测试测量]
基于CCD技术的非接触<font color='red'>在线</font><font color='red'>检测</font>仪设计
激光焊接OCT在线检测系统受到动力电池制造业青睐
日期: 2023年10月12日 作者: 费宗莲 激光焊接技术 在储能电池和新能源汽车制造领域得到广泛应用。然而焊接质检问题一直是业界面临的挑战。 激光焊接OCT在线检测设备 LWI-OCT(Laser Welding Inspection - Optical Coherence Tomography)战胜挑战,破冰而出,提供了非接触式、自动化、高精度熔深测量解决方案,代表着中国在先进制造领域的突破。 本文概述激光焊接 OCT在线检测系统的核心技术、功能特点、结构组成、应用前景。 一、 LWI-OCT系统的核心技术 激光焊接是利用高能量密度的激光束作为热源,迅速将材料加热至熔化状态, 进而形成匙孔和匙池
[工业控制]
激光焊接OCT<font color='red'>在线</font><font color='red'>检测</font>系统受到动力电池制造业青睐
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved