Multisim在电子线路实验教学中的应用

最新更新时间:2010-01-22来源: 现代电子技术关键字:Multisim  RC一阶动态电路  基本共射放大电路  教学仿真 手机看文章 扫描二维码
随时随地手机看文章

  传统电子线路的分析、设计方法首先是根据指标要求设计电路及其元件参数,在简化电路的基础上,对电路进行手工估算,然后在实验室搭建电路,使用仪器、仪表进行测试,验证是否满足指标要求。仿真软件Multisim借助虚拟现实技术,使设计者能“如实”地选择、更换元件,能“如实”地操作各种仪器、设备,进行 “现场”实验,能快速地模拟、分析、验证所设计电路的性能。与传统方法相比,这种虚拟技术既省时又经济,而且还可避免实验中发生的各种损坏和事故,在教学中更能节省时间和精力,有着广泛的应用前景。

  1仿真软件介绍

  Multisim是用于电子电路仿真和设计的EDA工具软件之一,属于Electronics Workbench(EWB)系列软件的高版本。EWB由加拿大Interactive。ImageTechnologies公司(IIT公司)于 1988年推出。IIT公司从EWB 5.0版本开始,将电路图输入仿真与设计的模块更名为Multisim。随着软件的升级,2005年,公司将其命名为Multisim 9。其特点如下:

  (1)Multisim是全功能电路仿真系统。

  (2)Multisim是一个完整的电子系统设计工具。

  (3)具有强大的仿真分析功能。

  (4)具有多种常用的虚拟仪表。

  (5)与NI相关虚拟仪器软件的完美结合,提高了模拟及测试性能。

  2仿真实例

  下面分别以在电路分析、模拟电子电路中的实际电路分析来说明该软件在电子电路中的应用。

  2.1 RC一阶动态电路的响应

  2.1.1.RC一阶动态电路的描述

  动态电路的过渡过程是十分短暂的单次变化过程,对时间常数较大的电路,可用超低频示波器观察其过渡过程。然而,若用一般的中频示波器观察过渡过程和测量有关的参数,则必须使这种单次变化的过渡过程重复出现。为此,实验中利用信号发生器输出的方波信号来模拟阶跃激励信号,即用方波输出的上升沿作为零状态响应的正阶跃激励信号,利用方波的下降沿作为零输入响应的负阶跃激励信号,方波信号的周期大于电路的时间常数。电路在这样的方波序列脉冲信号的激励下产生的响应过程,与直流电压源的接通与断开的过程类似。

  2.1.2积分电路

积分电路

  2.1.3微分电路

微分电路

  2.1.4电路仿真

  积分电路

  取R=10 kΩ,C=100 nF,信号发生器的输出为方波(幅值为2 V,偏移为2 V,频率为1 kHz,占空比为50%)作为激励电压,其仿真电路图如图2所示。

积分电路

  微分电路

  取R=510 Ω,C=100 nF,信号发生器的输出为方波(幅值为2 V,偏移为2 V,频率为1 kHz,占空比为50%)作为激励电压,其仿真电路图如图3所示。

仿真电路

  2.2基本共射放大电路仿真

  通过对图4所示基本共射放大电路的静态和动态性能测试进一步说明该软件的功能及适用范围。

基本共射放大电路仿真

  2.2.1静态工作点分析

  确定静态工作点的方法是动静结合,在电路的输入端加上正弦信号(幅值为10 mV,频率为1 kHz)。加上示波器(示波器的A通道接输入端,B通道接输出端),打开仿真开关,双击示波器图标,保持其他参数不变,调节电位器R的阻值(按A键阻值增大,按Shift+A键阻值减小,每次增减5%),同时观测输出信号波形和UCE读数(由万用表或电压表测得),直至波形无失真且(此时电位器的阻值为50%),即可认为电路的静态工作点基本合适。当确定了静态工作点后,将输入正弦输入信号置为0 mV,由仿真结果可知,UC=7.869 V,UE=1.902 V,UB=2.543 V,IC=1.726 mA。

  2.2.2动态性能分析

  放大器的动态性能指标主要包括电压放大倍数、输入电阻、输出电阻和幅频特性分析。

  (1)电压放大倍数Au

  当放大器调整到合适的静态工作点时,加入输入电压(10 mV的正弦信号),用万用表或电压表测出输入电压Ui和输出电压Uo的值,则接上负载是电压放大倍数为:

电压放大倍数

  负载开路时电压放大倍数为:

负载开路时电压放大倍数

  可知,电压的放大倍数与负载有关,负载开路时电压放大倍数增大。

  (2)输入、输出电阻

  输入电阻Ri是指从放大器的输入端看进去的等效电阻,它表明放大器对信号源的影响程度;输出电阻Ro是指从放大器的输出端看进去的信号源等效电阻。

信号源等效电阻

   式(5)中的Ui和Us分别是输入端与信号源之间串入的已知电阻和不加电阻时所测得的输入值,Rs即为所串入的电阻值,其阻值的大小取为1~2 kΩ;式(6)中Uo和UL分别是负载开路和接上负载时的输出值,其测试图如图5所示。

测试图

  在图5中通过开关J1控制在输入端是否串入电阻,开关J2控制是否加入负载。通过万用表测得数据可计算出输入电阻Ri=9.57 kΩ,输出电阻Ro=2.4 kΩ。

  (3)幅频特性

  放大器的幅频特性是指放大器的电压放大倍数与输入信号频率之间的关系曲线。在Multisim中频率特性的测试方法有两种:直接测量法和扫描分析法。

  ①直接测量法

  将波特图仪连接在电路中,如图5所示。双击波特图仪,仿真后,放大电路的幅频响应和相频响应如图6所示。可知下限频率fL=21.319 Hz,上限频率fH=1.82l MHz,则通频带BW=fH-fL=1.821 MHz。

  ②扫描分析法

  通过单击Simulate→Analyses(AC Analysis菜单,在弹出的对话框中“Output”栏选择输出节点MYM7,设置完成后点击Simulate按钮进行分析。得到电路的幅频特性和相频特性曲线图同图6所示一致,且与理路论分析结果完全吻合。

扫描分析法

  3结语

  利用Multisim对RC一阶动态电路及共射极放大电路主要性能指标的分析是一种方便、易行的方法,省去了在电子电路教学中用实际元器件安装调试电路的过程,能启发学生从验证性实验的传统思维过渡到对电路的分析、故障的排除和电路的设计;降低了实验成本,弥补了硬件环境下实验教学的不足,对更新实验教学方法,提高实验教学质量,改善实验教学效果有着非常重要的作用。另外还可利用Multisim软件自身提供的交流分析、噪声分析等来优化电路设计和分析。

关键字:Multisim  RC一阶动态电路  基本共射放大电路  教学仿真 编辑:金海 引用地址:Multisim在电子线路实验教学中的应用

上一篇:高边和低边电流检测技术分析
下一篇:双向过压过流保护器件NCP370的原理及应用

推荐阅读最新更新时间:2023-10-12 20:16

血氧仪核心硬件电路设计及Multisim仿真
摘要:为了实时检测血氧量,能使缺氧特别敏感的脑组织或心脏类疾病患者得到及时治疗,采用近红外双波长透射式光电脉搏血氧测定法,以H桥电路对发射光源进行控制及通用运算放大器搭建滤波电路。运用参数理论计算和计算机仿真结果相对比的方法,通过Multisim软件对所设计电路进行仿真,仿真结果与理论参数计算相吻合,证明了电路参数设计的可行性,为血氧仪的实物制作提供参考。 关键词:Muhisim仿真;血氧饱和度;双波长透射式测量;光电二极管;滤波器参数计算;H桥驱动电路 脑组织新陈代谢率高,耗氧量占全身耗氧量的20%,而且对缺氧特别敏感,短时间缺氧就有可能造成中枢神经系统不可恢复的损伤。心脏病患者,易发心绞痛、心肌梗塞,这两种情况,多数是因为
[工业控制]
血氧仪核心硬件<font color='red'>电路</font>设计及<font color='red'>Multisim</font><font color='red'>仿真</font>
Multisim 10在单管放大电路教学中的应用
摘要:利用 Multisim 10 仿真软件对单管共射放大电路进行了计算机辅助教学。采用直流工作点分析了电路静态工作点的设置。利用温度扫描和参数扫描分析了温度对静态工作点以及电路参数对输出波形的影响。对电压增益、输入电阻和输出电阻的仿真测试结果和理论计算基本吻合。研究表明,利用Multisim 10强大的分析功能对电子电路进行计算机仿真,可以提高教学质量和教学效果。   关键词:Multisim 10;电路仿真;静态工作点;动态参数   引言   在众多的电路仿真软件中,Multisim以其界面友好,功能强大和容易使用而倍受高校电类专业师生和工程技术人员的青睐。Multisim 10是美国国家仪器公司NI(Natio
[模拟电子]
<font color='red'>Multisim</font> 10在单管<font color='red'>共</font><font color='red'>射</font><font color='red'>放大电路</font><font color='red'>教学</font>中的应用
基于Multisim 8的弱信号放大电路的设计与仿真
  1 引言   运算放大器(op-amp)简称运放,因最初主要用于模拟量的数学运算而得名。它是一个高电压增益、高输入电阻和低输出电阻的直接耦合多级放大电路,也是最基本、最具代表性、应用最广泛的一种模拟 集成电路 。随着集成电路技术的迅速发展,电路性能设计的完善,集成运放正以无可比拟的优异性深入到各个领域。普通的集成运放一般具有mV 级的失调电压和每度数微伏的温度漂移, 因而将集成运放直接用于微弱信号的放大是十分困难的。然而在 工业自动化 控制、过程控制中, 运放常被用于放大来自 传感器 的低电平信号,这就要求用作前置放大器的集成运放具有高的输入阻抗,低的输出阻抗,低失调电压和温度漂移以及精密的反馈特性和高的共模抑制比能力,
[电源管理]
基于<font color='red'>Multisim</font> 8的弱信号<font color='red'>放大电路</font>的设计与<font color='red'>仿真</font>
基于NI Multisim 10与LabVIEW的单结晶体管伏安特性测试
单结晶体管是近几年发展起来的一类新型电子器件,它具有一种重要的电气性能,即负阻特性,可以大大简化自激多谐振荡器、阶梯波发生器及定时电路等多种脉冲产生单元电路的结构,故而应用十分广泛。了解单结晶体管的伏安特性曲线,是理解及设计含单结晶体管电路工作原理的基础。在传统的单结晶体管伏安特性测试实验中,通常需要直流电源与晶体管图示仪两种设备配合使用,然而图示仪没有相应的器件插孔,测试很不方便。另外,因图示仪的频率特性低,无法显示单结晶体管伏安特性的负阻区,这给理解其特性曲线带来困难。可以利用Multisim 10与LabVIEW结合完整地显示其特性曲线,且方便于读取峰点与谷点的电压及电流值。 1 用Multisim 10进行数据采集 Mult
[测试测量]
基于NI <font color='red'>Multisim</font> 10与LabVIEW的单结晶体管伏安特性测试
基于三态门总线传输电路Multisim仿真方案
三态电路是一种重要的总线接口电路,由若干个输出端连接在总线上的三态输出门构成。 三态是指输出处于工作状态的逻辑“0”状态输出、逻辑“1”状态输出及没有逻辑功能的高阻态输出。 常规的硬件实验测试三态总线电路逻辑功能的方法是,将三态输出门的控制端、输入端分别接逻辑电平开关,改变逻辑电平开关为逻辑1、逻辑0观测输出函数的逻辑状态。存在的问题是,总线分时传输关系不直观。用 Multisim 仿真 软件进行三态总线电路工作过程波形仿真分析,用环形计数器做实验中的信号源产生所需的各个控制信号、用脉冲信号源产生各数据输入信号,用逻辑分析仪多踪同步显示各个三态门的控制信号、数据输入信号及总线输出信号波形,可直观形象地描述 三态门 总线传输电路的
[电源管理]
基于三态门总线传输<font color='red'>电路</font>的<font color='red'>Multisim</font><font color='red'>仿真</font>方案
Multisim 10-LED更出彩!彩控变换的设计与仿真
目前的数字集成电路的设计都比较模块化。EDA技术是指以计算机为工作平台,融合了应用电子技术、计算机技术、信息处理及智能化技术的最新成果,进行电子产品的自动设计。利用EDA 工具,电子设计师可以从概念、算法、协议等开始设计电子系统,大量工作可以通过计算机完成,并可以将电子产品从 电路 设计、性能分析到设计出IC版图或PCB版图的整个过程的计算机上自动处理完成. Multisim 10是电子电路设计与仿真工具。科研方面主要利用电路仿真工具进行电路设计与 仿真 ,相对于其他EDA 软件,它具有更加形象直观的人机交互界面,特别是其仪器仪表库中的各仪器仪表与操作真实实验中的实际仪器仪表完全没有两样. LED 电子显示屏是由半导体发光二极管像
[电源管理]
<font color='red'>Multisim</font> 10-LED更出彩!彩控变换的设计与<font color='red'>仿真</font>
基于LabVIEW的单结晶体管伏安特性测试
  单结晶体管是近几年发展起来的一类新型电子器件,它具有一种重要的电气性能,即负阻特性,可以大大简化自激多谐振荡器、阶梯波发生器及定时电路等多种脉冲产生单元电路的结构,故而应用十分广泛。了解单结晶体管的伏安特性曲线,是理解及设计含单结晶体管电路工作原理的基础。在传统的单结晶体管伏安特性测试实验中,通常需要直流电源与晶体管图示仪两种设备配合使用,然而图示仪没有相应的器件插孔,测试很不方便。另外,因图示仪的频率特性低,无法显示单结晶体管伏安特性的负阻区,这给理解其特性曲线带来困难。可以利用Multisim 10与LabVIEW结合完整地显示其特性曲线,且方便于读取峰点与谷点的电压及电流值。    1 用Multisim 10进行
[测试测量]
基于LabVIEW的单结晶体管伏安特性测试
Multisim10在差动放大电路分析中的应用
      在自动控制系统中,往往需将一些变化缓慢的物理量(如温度、转速的变化)转换为相应的电信号,并通过直流放大器进行放大处理。直接耦合放大电路虽能放大交、直流信号,但电源电压的波动,晶体管参数随温度变化等因素会导致电路出现“零点漂移”。差动放大电路是一种利用电路结构参数的对称性有效抑制“零点漂移”的直流放大器,它对差模信号具有放大能力,而对共模信号具有抑制作用。典型差动放大电路由2个参数完全一致的单管共发射极电路组成。   Multisim 10是美国国家仪器公司(NI公司)推出的功能强大的电子电路仿真设计软件,具有丰富的新型元器件及虚拟仪器、强大的Spice仿真、数据可视化及分析测试功能,可对模拟、数字、自动控制、射频、
[电源管理]
<font color='red'>Multisim</font>10在差动<font color='red'>放大电路</font>分析中的应用
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved