带辅助DAC的双路Σ-Δ转换器的原理及应用

最新更新时间:2010-10-09来源: 互联网关键字:DAC  Σ-Δ模数转换器  AFC  串行端口  CMOS 手机看文章 扫描二维码
随时随地手机看文章
1. 内部框图

    AD公司新近推出的这种带辅助DAC的双路Σ-Δ模数转换器,是一个完整的15位CMOS模数转换器件。它采样速率高,功耗低,且输入端兼有信号处理功能,接收通道上的两个带数字滤波器的Σ-Δ型ADC合用一个能隙参考基准。控制DAC可执行AFC的功能,其它辅助功能可以从辅助串行端口获得,以满足器件多方面的性能要求。

    图1所示为AD7729的内部框图。AD7729主要有两大部分组成:模数转换器和辅助数模转换器。模数转换器由Σ-Δ型ADC、数字滤波器、偏移调整和主串行通讯接口组成;数模转换器由10位辅助DAC、输出缓冲器和辅助串行接口组成。

1.1 模数转换器

    模数转换器部分有I和Q两个通道,分别由一个开关电容滤波器和一个15位的ADC组成。片内的数字滤波器对系统的性能起着关键作用,它们的幅频和相频响应特性保证了相邻通道间的相互干扰有极好的抑制性。

a. Σ-Δ型ADC

    开关电容滤波器以13MHz的速率对接收的模拟量进行采样,其频率响应如2(a)所示。接收通道上的另一个数字滤波器的时钟频率为6.5MHz,其频率响应特性如图2(b)所示。两滤波器对应的综合频率响应如图2(c)所示。AD7729的接收通道采用了Σ-Δ转换技术,在片内实现系统滤波,从而保证了I和Q 端15位的高精度输出。具体工作过程是用一个充电平衡的调制器以6.5MHz的速度对开关电容滤波器的输出进行采样,并将其转化成数字脉冲串。过高的过采样速率能分散0?.25MHz的量化噪音,并使它在所关心的频带中减小。然后用一高阶的调制器对噪音频谱整形。再利用数字滤波器对带外噪音进行处理,并同时把数字脉冲转化成并行的15位二进制数据。





b. 数字滤波器

    它有288个抽头,建立时间为44.7μs。我们已介绍了它的两个重要功能:系统的滤波功能和消除带外量化噪音功能。由此可以看出,它有两点优于模拟滤波器:首先,由于它位于ADC之后,消除A/D转化过程中产生的噪音;其次,它不仅消除了低通的振铃,同时还保证了线性相位响应。虽然这些功能都是模拟滤波器很难达到的,但模拟滤波器却消除了A/D转化前信号中所带的噪音。由于噪音的波峰有使模拟调制解调器达到饱和的危险,AD7729专门为调制器和滤波器设置了一个超范围裕度,允许有100mV的超范围漂移。

1.2 数模转换器

a.辅助控制功能

    该功能是由辅助DAC来实现的。它由几个高阻抗电流源组成,后接很轻的负载以保证它的直流精度。辅助DAC带有输出放大器,可以允许10kΩ的负载电阻。DAC的模拟输出为2VREFCAP/32+(2VREFCAP-2VREFCAP/32)×DAC/1023 。其中:VREFCAP是参考电压。DAC是所要输出的数字信号。

b.参考电压和串行端口

    REFCAP是一个能隙参考基准,不仅噪音低,还可为ADC和辅助DAC提供温度补偿。参考电压VREFCAP=1.3V。主串行接口(BSPORT)和辅助串行接口(ASPORT)都是DSP(数字信号处理器)兼容的串行端口。用户可自由选择寄存器与端口的连接方式,还可通过调整SCLK的频率来减小功耗。

c. 读/写操作

    经串行口对寄存器进行的读和写操作就是对16位字长的数据即10个数据位和6个地址位(Rx例外)进行转换。必须对只读寄存器给出一定的地址才能从中读出对应的的内容,写入和读出的时间间隔大约为4个主时钟周期。

2. 引脚

    AD7729采用28引脚TSSOP和28脚SOIC两种封装形式。其引脚说明见表1所列。



3. 电路的调整

3.1 校准

    数字滤波器本身就是一种校准方式。一般来说,数字低通滤波器的每个通道上都有一个偏置寄存器。模拟电路中直流偏置的值便存在里面。一般情况下,在数据进入串行输出引脚之前,滤波器就已将寄存器的偏置信息清除。因此可选用自校准或用户校准来除去I和Q通道中的偏差。所不同的是自校准只能消除内部偏差,而用户校准则可以通过写入偏置寄存器的信息来对外部偏差进行校准。偏置寄存器最多能容纳162.5mV的直流偏置,超范围的输入将会导致错误的输出。然而,当带有超过100mV偏置的信号进入时,Σ-Δ调置器会自动换档。偏置寄存器中补码的值与Rx的对应关系如图3所示。

    AD7729有一个完整的自校准程序:当Rx被置位时,模拟电路和数字电路的稳定需要时间TSETTLE。只有当主控制寄存器A(BCRA)的RxAUTOCAL位处于高电平时,才开始进行校准。在内部自校准模式下,AD7729用短路差动输入来测量ADC中的偏移值;在外部自校准模式下,AD7729维持输入的正常连接允许系统偏置的存在。RxDELAY1和RxDDELAY2分别为两个定时器的定时时间,当RxDELAY2到时后,将会输出15位的无效数据。

3.2 Rx的接收过程

    当Rx置位时,串行端口的SDO脚将以270k字的速率输出Rx的数据。AD7729的输出结果为16位,即以二进制补码形式存在的数据位和一个志位(LSB),LSB用以区别I和Q。当LSB=0时,输出为I,否则为Q。只要RxON处于高电平,串行时钟的频率就保持为13MHz,而与时钟速率寄存器中的值无关。在SDO引脚自动输出Rx数据时,会同时产生帧同步信号,间隔为48个主时钟周期。辅助串行端口ASPORT和主串行端口BSPORT均能输出数据,但用户只能根据需要选择其一,并且不能同时在两个端口间进行数据交换。

3.3 断电

    AD7729的每个部分都能被断电。Rx模数转换器和辅助数模转换器可分别通过设定控制寄存器上的适当位来断电。当AD7729的每个部分都上电时,模拟电路和数字电路需要一个建立时间,同时参考电压VREFCAP也需要一个上电时间。为减少上电所需时间,可将LP置1而使ADC和DAC处于断电模式,而REFCAP引脚将保持上电模式,不需要上电和建立时间,从而使上电稳定工作所需的时间减小。ADC和DAC可通过适当的控制寄存器分别断电,当包括参考基准在内的所有元件都处于断电状态时,延迟64个时钟周期后,主时钟也停止工作。

3.4 复位

    引脚RESETB能复位所有的控制寄存器, ASCLKRATE和BSCLKRATE的复位值为4,以保证ASCLK和BSCLK信号的频率为MCLK的八分之一,其余控制寄存器则被复位为0。同时这些寄存器也能用主寄存器和辅助寄存器上的RESET位复位。所有的辅助寄存器通过给控制寄存器ACRB上的ARETSET位置高电平复位,而主寄存器则通给控制寄存器BCRB上的BRETSET位置高电平来复位,所需时间为4个主时钟周期。复位后,ARESET和BRESET的复位值为0。寄存器 ARDADDR,BRDADDR,ASCLKRATE,BSCLKRATE只能用复位引脚RESETB复位,所需时间为8个主时钟周期。控制寄存器的功能见表2所列。



4.接口举例

    AD7729还为用户提供了与DSP兼容的标准串行端口,由ADC的串行时钟控制串行数据和I/O DSP信息。

   图4为AD7729与ADI公司的ADSP-21xx的接口原理图。对于ADSP-21xx,串行端口的控制寄存器必须设置为TFSR=RFSR=1 (保证每个转换器的帧同步),SLEN=15(16位字长),TFSW=RFSW=0(正常帧同步),INVIFS=INVRFS=0(高有效的帧同步信号),IRFS=0(外部RFS),ITFS=1(内部TFS)和ISCLK=0(外部串行时钟)。

    AD7729是一种带辅助DAC的双路Σ-Δ模数转换器,它不仅具有噪音低,精度高,工作速度快等优点,并且可与多种DSP接口,通用性很强。所以该器件是新一代理想的数据采集和模数转换器件,可广泛应用于通讯、多媒体和高性能仪器中。

关键字:DAC  Σ-Δ模数转换器  AFC  串行端口  CMOS 编辑:金海 引用地址:带辅助DAC的双路Σ-Δ转换器的原理及应用

上一篇:利用DAC实现高精度、双极性电压输出数模转换
下一篇:正确计算DAC功耗数据

推荐阅读最新更新时间:2023-10-12 20:17

3D激光三角测量技术为机器视觉提供更大深度
3D视觉技术正在成为主流--这是件好事。技术的进步和成本的降低使得3D视觉成为一种可以用于半导体和电子、电动车电池制造、汽车制造、食品生产和药品包装等多种应用和行业的技术。人们会在生产制造自动化、机器人引导和质量控制领域中看到3D传感器和轮廓仪。 过去,3D系统处理速度太慢,无法跟上生产,价格过于昂贵,配置难度高,且不易维护。相反的,系统设计人员依靠(1D)和(2D)扫描成像技术复杂的相机和照明配置中执行检测,使用软件计算深度信息。 传感器质量和速度、嵌入式视觉、FPGA、激光、光学和智能系统的同步发展使得3D成像成为当今更加可行的选择。现在的3D成像技术具有成本低、可靠、可重复、易于实施的优势,并在各种要求严苛的应用中得
[嵌入式]
3D激光三角测量技术为机器视觉提供更大深度
超越摩尔定律的新技术MEMS
半导体技术在摩尔定律上似乎走入了瓶颈期,而超越摩尔定律的新兴技术却受到了众多公司的青睐,其中MEMS以无处不在的应用潜力攫取了业界大大小小公司的眼球。 MEMS设计,EDA先行 相对于CMOS工艺,MEMS的复杂性在于其涉及机械、声学、光电、化学、生物等多学科,而两者都离不开EDA软件工具的辅助设计来完成这些复杂工作,缩短开发时间、降低成本。MEMS设计工具供应商Coventor中国区MEMS产品经理覃裕平在介绍其“MEMS+IC”的通用开发平台时指出,传统面向CMOS ASIC的MEMS芯片总是单独进行设计,此外MEMS结构的设计采用三维CAD系统,当把MEMS设计转移到半导体电路模拟器和验证工具时,对工艺参数进行繁琐的
[嵌入式]
模数转换器的电源去耦问题解析
模数转换器的电源去耦问题解析 尽管高速ADC给电源带来的总负载是稳定的,但需要电流以ADC采样速率和此频率的谐波快速跳变。由于电路板和走线的电感会限制电源能够迅速提供的电流量,因此ADC所需的高频电流是由板电源去耦电容提供的。为高速ADC供电时,应同时采用大的电源去耦电容和局部(ADC引脚处)去耦电容。大去耦电容存储电荷以对电源层和局部去耦电容充电,局部去耦电容则提供ADC所需的高频电流。有效的去耦还能将高频电源瞬变限制在距离产生瞬变的IC非常近的区域,从而使电路板上产生的电磁辐射 (EMI) 降至最小。 一般而言,应为每个ADC电源轨至少提供一个大去耦电容。这些电容应当是10uF至22uF范围内的低ESR陶瓷或钽电容
[模拟电子]
ADI推出业界首款全隔离式模数转换器
中国,北京——Analog Devices, Inc. (NASDAQ: ADI),全球领先的高性能信号处理解决方案供应商,最近推出业界第一款全隔离式模数转换器(ADC) ADE7913,专为三相电能计量应用而设计。ADE7913 是一款3通道、Σ-Δ型ADC,集成ADI公司的iCoupler®和isoPower®专利技术,通过个额定5kV的隔离栅实现隔离式信号传输和DC-DC电源转换。它可使用分流电阻传感元件,而非电流互感器(CT),因此不受磁场干扰和窃电篡改的影响。使用分流电阻而非CT还可降低系统成本和尺寸。 • 查看ADE7913电能计量IC产品页面、申请样片和下载数据手册: http://www.analog.com/
[模拟电子]
ADI推出业界首款全隔离式<font color='red'>模数转换器</font>
MSP430 ADC_12bit
1. 介绍 ADC12_A模块支持快速的12位模数转换。该模块支持了一个12位的SAR核心,样本选择控制,参考生成器,和一个16字的转换和控制缓冲区。转换和控制缓冲区允许多达16个独立的模数转换器(ADC)样本转换和存储,无需任何CPU干预。 最大转换率大于200ksps 无缺失码的单调12位转换器 采样保持周期可编程,由软件或定时器控制 由软件或定时器发起转换 软件可选的片上参考电压1.5 V, 2.0 V或2.5 V 可选内部参考或外部参考 多达12个模拟输入通道 内部温度传感器通道 正负参考可独立配置通道 可选转换时钟 单通道,重复单通道,序列(自动扫描),和重复序列(重复自动扫描)转换模式 ADC核心和参考电压可以单独
[单片机]
MSP430 <font color='red'>ADC</font>_12bit
ADC0832-2应用程序
//============================================================================== //2005-03-28...2005-03-29 //ADC0834模块的C51程序源文件 //File Name=ADC083X.c //============================================================================= #include #include DELAY_S.h #include ADC083X.h //外部全局变量的预定义 //**************************
[单片机]
提高MAX1464 ADC性能
摘要:MAX1464是一款高性能、多通道信号调理器,其内部16位模数转换器将模拟输入信号转换为数字量。为了使转换分辨率达到最大,必须在模数转换器的线性范围内将输入信号中的失调补偿调零后再进行放大。该篇应用笔记描述了有效完成这一任务的方法和流程。 提高MAX1464的转换分辨率 MAX1464是一款高性能、低成本、低功耗、多通道、基于微处理器的数字式传感器信号调理器,集成了片上闪存和温度传感器。在信号通路的中心有一个16位模数转换器(ADC)用来将模拟输入信号转换成数字量由内部微处理器进行处理。为了最大化转换分辨率,必须将输入信号的失调使用粗调-失调DAC CO调零,然后通过设置可编程增益放大器(PGA)将其放大到ADC线
[模拟电子]
提高MAX1464 <font color='red'>ADC</font>性能
多种ADC的分析比较
A/D转换技术   现在的软件无线电、数字图像采集都需要有高速的A/D采样保证有效性和精度,一般的测控系统也希望在精度上有所突破,人类数字化的浪潮推动了A/D转换器不断变革,而A/D转换器是人类实现数字化的先锋。   逐次逼近型、积分型、压频变换型等,主要应用于中速或较低速、中等精度的数据采集和智能仪器中。分级型和流水线型ADC主要应用于高速情况下的瞬态信号处理、快速波形存储与记录、高速数据采集、视频信号量化及高速数字通讯技术等领域。此外,采用脉动型和折叠型等结构的高速ADC,可应用于广播卫星中的基带解调等方面。∑-Δ型ADC主应用于高精度数据采集特别是数字音响系统、多媒体、地震勘探仪器、声纳等电子测量领域。下面对各种
[模拟电子]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved