基于软件无线电的直扩通信终端设计与仿真

最新更新时间:2011-01-21来源: 现代电子技术关键字:软件无线电  直扩通信  扩频增益  伪码同步 手机看文章 扫描二维码
随时随地手机看文章

0 引言

    直接序列扩频通信是扩频通信技术中的一种,具有抗干扰、抗多径衰落、抗阻塞能力强,以及频谱利用率高、保密性好、截获率低、易于组网、进行高精使测距等诸多优点。

    本文提出了一种基于软件无线电的直扩系统的设计方案。给出了各项设计参数指标,并对所提出的设计方案进行了仿真验证。

1 系统基本结构

    基于软件无线电的直扩通信终端采用对中频进行数字化采样,由软件编程实现信号的扩频、调制、解扩、解调等数字信号处理。本文重点介绍直扩通信终端的中频数字处理的具体实现方案。直扩通信终端的结构框图如图1所示。


a.JPG

    信号发射时,信息经过信源、信道编码后,与扩频伪码进行相乘扩频。为了使扩频后的基带信号与后面的DAC的转换速率相匹配,在正交调制之前必须通过内插把低速率的扩频基带信号提升到DAC的转换速率上。内插后的数据通过成形滤波器,以消除码间干扰和高频镜像干扰,内插滤波后的扩频基带信号与载波相乘实现数字调制,之后通过高速DAC转换成中频模拟信号。

    信号接收时,中频模拟信号经过高速ADC采样后,与本地载波相乘进行正交下变频至零中频,经抽取滤波后,送入伪码同步环进行伪码捕获跟踪。伪码同步后,再经过信号解扩解调以及相应的信道和信源解码。

2 系统参数设计

    直扩通信终端参数约束主要有如下几个方面:

    (1)信息数据的传输速率:由于该直扩通信终端主要用于低速率数据通信以及语音通信,而且目前语音编码(如CELP、AMBE编码)后的数据速率一般为 2.4Kb/s,4Kb/s,4.8Kb/s,8Kb/s,9.6Kb/s。因而在信息速率的选择上设定信息速率为8Kb/s,信道编码采用码率为1/2 的卷积编码。因此待扩频的数据速率为16 Kb/s。

    (2)扩频伪码类型以及阶数:由于所设计直扩通信终端目前完成的是点对点的通信,因而为了简便起见,在直扩通信终端中采用m序列作为扩频伪码。若m序列的长度太长,则不仅增长了接收机的捕获时间还增加了接收机结构的复杂性。若m序列长度太短,则中频数字化直扩通信终端的抗干扰能力减弱。因而采用折中方式,采用11阶的m序列作为中频数字化直扩通信终端的扩频伪码。

    (3)扩频处理增益:扩频增益是直扩通信的一个重要参数,反映了系统抗干扰能力的强弱,是对信噪比改善程度的度量,其定义为接收机输出信噪功率比与接收机的输入信噪功率比之比,即:
   d.JPG
    其中:BRF为扩频后的带宽;Bb为基带数据带宽;Rc为扩频后的伪码速率;Rb为基带数据速率。在本设计中,为了提高频带利用率,考虑到所允许的最大带宽,这里设计伪码的速率为4.096 Mb/s。因而,可以得到中频数字化直扩通信终端的处理增益为24 dB。

    (4)数字调制方式和中频载频:由于DPSK信号采用带判决反馈结构的叉积鉴频环不仅可以消除频偏,而且还可以进行差分解调,从而不需要载波的相位同步,简化了接收机的电路设计。因而采用DPSK作为中频数字化直扩通信终端的数字调制方式。

    在中频载频的选择上,采用21.4MHz为中频数字化直扩通信终端的中频载频。

    (5)伪码同步电路:对于伪码捕获电路框架,采用非相干串行捕获法。其中的积分清洗滤波器可用累加器或者匹配滤波器来代替。由于直扩通信终端采用先解扩后解调,在解扩之前无法得到精确的载波相位和载频,因此伪码跟踪电路采用非相干超前延时锁相环。

3 仿真结果

    由于伪码速率为4.096 Mb/s,故由采样定理可知至少需8.192 MHz的采样频率对伪码采样,考虑到伪码跟踪电路延迟超前锁相环的方便设计,采用16.384 MHz的采样速率对伪码进行采样,即一个伪码采四点。因而信息信号经扩频后得到的基带扩频信号速率为16.384Mb/s,而DAC转换速率设定为81.92 Mb/s,所以为匹配数据速率需要对基带扩频信号进行内插,内插因子为81.92/16.384=5。接收过程为发送过程的反过程,抽取因子等于内插因子也为5。

    为了提高频谱利用率,消除码间干扰,需要使用成形滤波器对扩频后的码片进行成形滤波。在中频数字化直扩通信终端设计中为了节省电路资源,把成形滤波器设计为既起码片成形作用,又起内插滤波作用。为了降低滤波器的数据吞吐率,这里采用多项滤波结构。基带扩频信号在内插了5倍后,速率达到了81.92 Mb/s,因而滤波器的采样频率为81.92 MHz。由于采用DBPSK调制,伪码速率为4.096 Mb/s,因调制后的信号3 dB带宽为4.096 MHz,因此滤波器的截止频率只要为2.048 MHz即可,但为了能较好地滤出信号频率,在中频数字化直扩通信终端中,设定滤波器的截止频率为4.096 MHz,从而既满足了内插滤波的要求又满足了码片成形的要求。由于收发过程中都使用了成形滤波器,所以成形滤波器采用平方根升余弦滤波器。

    根据所设定的参数,进行了直扩通信终端的扩频调制仿真,发射部分Matlab仿真结果如图2所示。

e.JPG

    由图2可知,信息数据经过扩频之后,其频谱在整个频段中得到了扩展,再与载频为21.4 MHz的载波相乘实现数据的上变频(即DPSK调制)。

    在接收端,信号经过下变频、抽取后,采用串行捕获方法,伪码捕获同步后,便可进行信号的解扩工作,解扩后的仿真波形如图3所示。


b.JPG

    由图3可以看出,信号经过相关解扩处理后,有用信号被解扩,其功率谱集中于信息带宽内。而无用信号通过相关器后,频谱虽然大大的展宽了,但信号在整个频带内的能量不变。

    解扩后的信号经过低通滤波,信息解调后得到如图4所示。接收到的扩频信号经过正交下变频、抽取滤波、伪码同步、低通滤波和信息解调后得到的信息数据与所发送的信息数据完全一样。


c.JPG

4 结语

    主要讨论了扩频通信中的直扩通信系统的软件无线电实现结构及其参数设计,包括扩频伪码类型、扩频增益、中频选取、伪码同步电路等,并用Matlab仿真了该方案。仿真结果表明方案的可行性。同时表明该设计方案具有体积小,灵活性好,低功耗,扩展性强等优点。

关键字:软件无线电  直扩通信  扩频增益  伪码同步 编辑:金海 引用地址:基于软件无线电的直扩通信终端设计与仿真

上一篇:用于TD-SCDMA系统的集成CMOS对称式收/发开关
下一篇:汽车无线接入系统技术设计介绍

推荐阅读最新更新时间:2023-10-12 20:18

基于PCI-9846的航空导航VOR信号综测仪设计
引言 航空电子设备的测试要求利用有限的资源,构建功能多样化的自动测试系统。机载电子设备的信号多且复杂,涵盖了低频和高频信号、连续和离散信号,同时还包括一些非电信号。传统的测试系统采用分立仪器搭建,这种方法成本高,测量自动化程度低,扩展性差。随着民用航空运输业的发展,大部分机载飞行电子设备高度数字化、集成化,已不可能靠人工手动对其进行测试检查。所以目前世界各发达国家均采用自动测试设备完成此类工作。 软件无线电的基本思想是以一个通用、标准、模块化的硬件平台为依托,通过软件编程来实现无线电台的各种功能,从基于硬件、面向用途的电台设计方法中解放出来。自动测试系统对信号源的灵活性和全面性提出了更高的要求,传统的信号发生器难以满足需求。
[测试测量]
基于PCI-9846的航空导航VOR信号综测仪设计
FPGA软件无线电
软件无线电 技术给正在开发无线电架构的工程师带来力量。编程中频(IF)带宽、调制、编码模式和其他无线电功能的能力广泛引起注意的。除了提供所有这些灵活性外,软件无线电必须改善灵敏度,动态范围和邻信道抑制性能。软件无线电仍然是无线电,但它必须被比正在替代的通常无线电执行的更好。 现场可编程阵列( FPGA )技术先进之处在于紧凑的占位空间能够高速处理,同时也保持软件无线电技术的灵活性和可编程性。FPGA在高速、计算密集、可重新配置应用(FFT、FIR和其他乘法—累加运算)中是受欢迎的。从FPGA和板供应商可得到可重新配置核,在FPGA中能够实现调制器,解调器和CODEC功能。系统设计人员期待着带集成FPGA的前端
[嵌入式]
FPGA<font color='red'>软件无线电</font>
基于软件无线电的多制式信号发生器的设计与实现
摘要:提出了一种软件无线电通用信号发生器的设计方案,包括硬件构成和软件算法的实现。该信号发生器为软件无线电的研究与开发提供了便利条件。 关键词:软件无线电 DSP DDS 软件无线电是一种无线电通信新的体系结构。在1992年5月美国电信系统会议上,JeoMitola首次提出了软件无线电概念,之后迅速引起了人们的关注,并开始对它进行广泛而深入的研究。具体地说,软件无线电是以可编程的DSP或CPU为中心,将模块化、标准化的硬件单元以总线方式连接起来,构成通用的基本硬件平台,并通过软件加载来实现各种无线通信功能的开放式的体系结构。它使得通信系统摆脱了面向设计思想,被认为是无线通信从模拟到数字、从固定到移动之后的又一次突破。 在
[网络通信]
软件无线电的远程安全配置系统设计
摘 要 介绍一种软件无线电以太网的配置方案。谊设计使用Atmel公司的FPSLIC微控制器作为主控单元,韩国Wiznet公司的W3100A为网络协议解析单元。在SystemDesigner3.0开发环境中,完成系统与远程控制端的安全通信和远程配置文件的加戢,使配置后的系统根据不同用户有不同的硬件解密功能,最大程度地保证软件无线电的配置安全。 关键词 软件无线电 配置系统 FPSIJlC W31OOA 引 言 随着现代通信技术、微电子技术和计算机技术的飞速发展,无线通信技术开始从数字化走向软件化。软件无线电的出现掀起了无线通信技术的又一次革命,已成为目前通信领域中最重要的研究方法之一。它的基本思想是把模块化、标准化的硬件功能单元
[应用]
基于软件无线电的发信机原理及实现
摘 要:针对当前通信设备兼容性差的情况,提出一种基于软件无线电思想的中频数字化方案,该方案采用TI公司TMS320vC5509芯片及Inters订公司推出的HsP50415数字上变频器构成核心单元。实践结果表明该方案可以方便地实现各种QAM和QPM调制,并可对中频进行精确设置,较模拟化中频发射机有着通用性强、成本低廉、功耗低等优点。 关键词:软件无线电 中频数字化 发信机TMs320Vc5509 HsP50415 经过几十年的发展,无线通信取得了巨大的进步,但通信设备的互通性差,一直制约着通信的进一步发展。有鉴于此,自1992年Jeo Mitola首次明确提出软件无线电(soft radio)的概念以来,软件无线电作为未来通信
[应用]
CEVA携首款面向软件无线电的向量处理器DSP内核进军4G无线基础设施市场
硅产品知识产权(SIP)平台解决方案和数字信号处理器(DSP)内核授权厂商CEVA公司荣幸宣布推出业界首款用于4G无线基础设施应用的高性能向量DSP内核CEVA-XC323,相比来自德州仪器等现有基站侧VLIW DSP,CEVA-XC323在无线基站应用中的性能提升多达4倍,可以通过减少所需的处理器和硬件加速器数量从而显著降低总体BOM成本。无线基础设施供应商已经在设计中采用CEVA-XC323,用于4G软件无线电(SDR)基站应用。 CEVA-XC323是一款可扩展解决方案,支持网络运营商所需的全系列蜂窝站点解决方案,包括毫微微蜂窝 (femtocell) 基站、微微蜂窝 (picocell) 基站、微蜂窝 (
[嵌入式]
基于软件无线电扩频通信同步研究
扩频通信提供了一种抗干扰的有效途径。由于采用了伪随机编码扩展频谱,以及相关接收技术,使其具有很强的抗干扰性能。软件无线电SDR(Software Defined Radio)是近年来发展起来的一门新兴学科。它采用数字信号处理技术,在可编程控制的通用硬件平台上,利用软件来定义无线电台的各部分功能。其核心思想是在尽可能靠近天线的地方使用宽带“数字/模拟”转换器,尽早地完成信号的数字化,从而使得无线电台的功能尽可能地用软件来定义和实现。基于软件无线电进行扩频通信系统设计具有设计灵活、易于调试、缩短系统开发时间,同时还具有可兼容性,是未来的发展趋势。 1 系统介绍 在系统发射端,数据流经过2比特串并转换后分为I、Q两路,然后对I、Q两
[嵌入式]
汽车中的软件无线电简介
  软件无线电(SDR)是指发射方的调制和接收方的解调都使用软件来完成的一种无线通信方式。每一个SDR的接收器都会在通过天线或一个中间界面以后加上一个模拟到数字(A/D)的信号转换器。   混音以及基带的处理都是以数字方式完成并通过软件来进行控制。这样一种操作模式的主要优点在于其高度的灵活性,因为软件完全可以在为任何一种接收器所设置的通用硬件平台上运行。设计人员可以通过这个通用的硬件平台提取所有接收器所共有的一组功能,或者在加入新的接收器时,设计人员可以根据需要选择对硬件进行重新设置。   图1显示了一个典型的汽车SDR系统。SDR的接收器由一个信道处理模块以及一个解码模块构成。信道处理模块使用数字化的下变频器、CIC滤波器以及
[嵌入式]
小广播
最新模拟电子文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved