一种基于开关电容技术的锁定放大器设计

最新更新时间:2011-01-27来源: 电子设计工程关键字:开关电容  积分器  相关检测  锁定放大器 手机看文章 扫描二维码
随时随地手机看文章

随着电子学、信息论、物理学、计算机技术的发展,为满足现代科学研究和技术开发的需要,微弱信号的处理方法得到不断的发展。微弱信号检测技术可以分为两类:1)用硬件电路实现微弱信号的调理和采集,其方法主要有:滤波技术、相关检测技术、同步积累法、开关电容网络及光子计数法等;2)利用计算机技术和信息处理技术从噪声中提取微弱信号。这里主要从硬件方面提出一种新的微弱信号检测电路设计方案,利用开关电容网络和积分器相结合实现检测,在降低噪声的同时,对微弱信号进行放大。

1 锁定放大器工作原理

锁定放大器是基于互相关原理设计的一种同步相干检测仪,能够对检测信号和参考信号进行相关运算。按照互相关的数学表达式,相关器包括乘法器和积分器2部分。考虑到线性范围和动态范围,通常相关器不采用模拟乘法器,而采用线性好、动态范围大、电路简单的开关式乘法器。锁定放大器的参考信号不是一个任意函数,而是和待测信号同步的方波。锁定放大器的工作原理如图1所示。图中乘法器和积分器实现互相关运算,积分器在同步方波的控制下以充放电形成方波信号,以便后续电路处理;带通滤波器(BPF)的功能是选频和放大,根据放大倍数的需要,采用适当级数的BPF;相敏检波器(PSD)把放大后的调制信号再和载波信号相乘,利用低通滤波器(LPF)滤出高频分量,输出直流电平的大小与被测微电流成正比。


    图2为锁定放大器采用的相关原理。

    由此可知,相关器输出为直流电压,其值正比于输入信号的基波振幅,并与参考信号之间的相位差的余弦成正比。

 


    开关电容是用开关控制电容进行充放电的电路,由模拟开关和电容构成,基本电路如图3所示。2个开关由方波信号控制,U1到U2之间的等效电阻Req为:
    
    式中,T表示方波信号的周期,Ieq表示充电电流。开关电容电路相当于T/C的电阻,既可以实现高输入阻抗,又可以组成精度和稳定性都较高的滤波器,也便于集成。

2 设计方法

如图4所示,把图2中的电阻R1换成图3中的开关电容,不仅可以实现相关检测中乘法器的功能,而且电路本身具有一定的滤波性能。如果改变控制信号的周期和积分电容的大小,就可以改变信号输出的幅值,且便于集成。由于采用积分环节,降低了噪声对微弱信号的影响。此时式(4)变为
    
    由式(6)可知,输出的电压是直流信号。为了测量的准确,利用同一方波信号控制开关电容和积分电容的充放电,即当C1充电时,C2放电;反之,当C2充电时,C1放电。这样电路输出周期性的方波信号,经过BPF后为固定频率的正弦信号,通过改变BPF级数和放大倍数可以改变整体电路的倍数,以便测量更小的微弱信号。最后信号通过PSD后输出稳定的直流信号,便于后续电路采集。R0可以看作是开关导通电阻,可以加反馈电阻。由式(6)可知,通过改变C1和方波频率的大小,就可以改变电路的放大倍数,但是频率可调会增加BPF设计的难度。为了提高锁定放大器的性能,可以在BPF的通带内调节电容或者频率。

 

    利用开关电容实现相关算法的电路如图5所示。开关控制信号由信号源输出的方波信号提供,用CD4052两片模拟开关来控制开关电容和积分电容充放电,A2是第一级BPF电路,U0接入后续电路。



3 数据分析

测量用的微弱信号通过电阻分压获得。在电路调试中选择电容C1、C2的值均为0.1 μF,开关控制信号的频率为1 kHz,输入的电流为微安级,电路的输入输出关系如图6所示。图6(a)表示直流测量数据,图6(b)表示交流测量数据(电容为O.1μF,控制信号和输入信号的频率均为1 kHz,控制信号是方波信号,输入信号是正弦信号)。


    由图6可知,电路的线性度较好,说明本方法是可行的。改变开关电容和积分电容的大小,会改变电路灵敏度的大小,但不会改变线性度和稳定性。该电路结构简单,在降低噪声的同时,可以将微弱信号放大很多倍,并变成与其对应的直流信号,便于采集和显示。积分器输出电压不能太大,否则波形易失真,会引起测量误差。为了便于后续处理,通过改变BPF的级数和放大倍数以增加整体电路的放大倍数,从而能够测量更小的微弱信号。

4 结论

本文利用开关电容和积分器相结合实现了锁定放大器的功能。该电路结构简单,线性度和稳定性较好。不但可以降低噪声,而且将微弱信号放大很多倍,并变成与其对应的直流信号,以便采集和显示。对于皮安级电流,采用本相关器,可以使输出电压达到微伏级,通过BPF后可以达到伏特级。

关键字:开关电容  积分器  相关检测  锁定放大器 编辑:金海 引用地址:一种基于开关电容技术的锁定放大器设计

上一篇:LMH6550放大器及ADC12DL065模/数转换器的信号路径
下一篇:基于压控增益放大器VCA822的可编程宽带放大器

推荐阅读最新更新时间:2023-10-12 20:19

东芝开发出用于无线IC的宽输入电压、高效率开关电容直流
东京 东芝公司 (TOKYO:6502)今日宣布开发出一款用于无线IC的芯片上开关电容直流-直流转换器,其效率高达95.8%,具备0.85V至3.6V宽输入电压范围和0.1V至1.9V宽输出电压范围。该直流-直流转换器延长无线设备的电池续航时间并且同时支持使用具有相同设计的3V锂电池和1.5V碱性电池。该项成果于2016年2月2日在加州旧金山举行的2016 IEEE国际固态电路会议(ISSCC)上公布。 目前的很多无线IC嵌入直流-直流转换器来代替低压差线性(LDO)稳压器,以降低无线IC的功耗。然而,主流的基于电感的直流-直流转换器需要相对笨重而昂贵的电感。基于电容的直流-直流转换器能够提供一个紧凑、低成本模块,因
[手机便携]
轻松实现电容式触摸感应按键开关设计
市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。针对此趋势,益登科技设计出以Silicon Labs公司MCU为内核的电容式触摸感应按键方案。电容式触摸感应按键开关,内部是一个以电容器为基础的开关。以传导性物体(例如手指)触摸电容器可改变电容,此改变会被內置于微控制器内的电路所侦测。   电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。测量周期的变化,就可以侦测触摸动作。   具体测量方式有两种:一是可以测量频
[模拟电子]
轻松实现<font color='red'>电容</font>式触摸感应按键<font color='red'>开关</font>设计
Molex突破性电容开关设计获高端洗衣机采用
Molex公司与一家跨国大型电器产品制造商合作,开发出用于两款高端A级能效洗衣机的电容式触控面板,Molex电容式开关和面板使用电容电场感测(capacitive-field-sensing)技术来实现无运动部件的用户界面,用于一系列医疗、工业、消费电子和家用电器应用。 Molex工程经理Steve Fulton表示:“电容式开关技术为电子产品用户界面提供一个经过验证的机械控制升级方法。洗衣机的用户面板包含具有想象力的概念和强大的工程技术特性,以便实现更强的功能性并提供出色的产品可靠性和节能特性。” 电容式开关面板设计在稳健的界面中集成了固态电路,具有高度耐受多次按键按压、水、灰尘、污染物和EMI的特性
[家用电子]
Molex突破性<font color='red'>电容</font><font color='red'>开关</font>设计获高端洗衣机采用
基于谱相关分析的频谱空洞检测方案
为了提高频谱的利用率,瑞典皇家学院Mitola博士提出了认知无线电技术,它能够自动检测周围的频谱环境,有效地利用空闲频段。在认知无线电众多的关键技术中,频谱检测是其得以发展的前提。当今在主用户发射端的频谱检测算法主要包括:匹配滤波器检测、能量检测和循环平稳特征检测。匹配滤波器检测需要获得完备授权用户信号的先验知识(如调制方式、脉冲波形等),它能使接收信噪比最大,是一种最优的检测器。能量检测是一种非相干检测,它无需知道授权用户的先验知识,直接在时域或频域对采样值求模的平方即可,但是它具有噪声不确定性,在信噪比较低的情况下,检测性能易受到影响。循环平稳特征检测除了复杂度较高外,可以克服能量检测的缺点。调制后的基带信号在均值和自相关等统
[测试测量]
基于谱<font color='red'>相关</font>分析的频谱空洞<font color='red'>检测</font>方案
开关电源原理与设计(连载38)单电容半桥式变压器开关电源输出电压
      图1-41和图1-42是单电容半桥式变压器开关电源刚开始工作时输出电压和储能电容充电时电容器两端的电压波形。这里我们分成两种极端情况来进行分析,图1-41表示单电容半桥式开关电源变压器励磁电流为最大值时的极端情形;而图1-42表示单电容半桥式开关电源变压器励磁电流为最小值时的极端情形。因此,在实际工作中的单电容半桥式变压器开关电源,在刚开始工作的时候,其输出电压和储能电容充电时电容器量端的电压波形一定会介于图1-41和图1-42所包含的两种结果之间。       由于单电容半桥式变压器开关电源正常工作时,加到变压器初级线圈两端的电压只有输入电源电压的二分之一,因此,在进行变压器参数设计的时候不可能把变压器的伏秒容量
[电源管理]
<font color='red'>开关</font>电源原理与设计(连载38)单<font color='red'>电容</font>半桥式变压器<font color='red'>开关</font>电源输出电压
高隔离度X波段RF MEMS电容式并联开关
RF MEMS开关在隔离度、插入损耗、功耗以及线性度等方面,具有比FET或pin二极管传统微波固态开关无法比拟的优势,从而获得了广泛的关注,并显示出在微波应用领域的巨大潜力。自1979年K.E.Petersen第一次报道RF MEMS开关的应用以来,业界已研制出很多不同结构的RF MEMS开关。无论是在隔离度还是在插入损耗上,RFMEMS电容式并联开关在Ka到W波段都表现出了良好的性能。但是,RF MEMS电容式开关在低频段的较低隔离度限制了其在X波段的应用。为克服以上不足,J.B.Muldavin等人提出了在开关梁与地平面之间加入高阻抗传输线,通过该传输线引入的串联电感使LC谐振频率达到X波段范围,并获得了在X波段隔离度优于-20
[电源管理]
高隔离度X波段RF MEMS<font color='red'>电容</font>式并联<font color='red'>开关</font>
开关电源中滤波电容的正确选择
滤波电容在开关电源中起着非常重要的作用,如何正确选择滤波电容,尤其是输出滤波电容的选择则是每个工程技术人员都十分关心的问题。   50Hz工频电路中使用的普通电解电容器,其脉动电压频率仅为100Hz,充放电时间是毫秒数量级。为获得更小的脉动系数,所需的电容量高达数十万μF,因此普通低频铝电解电容器的目标是以提高电容量为主,电容器的电容量、损耗角正切值以及漏电流是鉴别其优劣的主要参数。而开关电源中的输出滤波电解电容器,其锯齿波电压频率高达数十kHz,甚至是数十MHz,这时电容量并不是其主要指标,衡量高频铝电解电容优劣的标准是“阻抗-频率”特性,要求在开关电源的工作频率内要有较低的等效阻抗,同时对于半导体器件工作时产生的高频尖峰信号
[电源管理]
工业视觉检测-镜头的相关选择及特性
1、镜头的选择 工业相机镜头由多个透镜、可变(亮度)光圈和对焦环组成。如下图所示,在使用时由操作者观察相机显示屏来调整可变光圈和焦点,以确保图像的明亮程度及清晰度(有些镜头有固定调节系统)。 (1)镜头的接口 镜头的接口尺寸是有国际标准的,共有三种接口型式,即F型、C型、CS型,其他有M42、莱卡、哈苏、AK。F型接口是通用型接口,一般适用于焦距大于25mm的镜头;而当物镜的焦距约小于25mm时,因物镜的尺寸不大,便采用C型或CS型接口。 C接口和CS接口的区别: ①C与CS接口的区别在于镜头与摄像机接触面至镜头焦平面(摄像机 CCD光电感应器应处的位置)的距离不同,C型接口此距离为17.526mm,CS型接口此距离为12
[嵌入式]
工业视觉<font color='red'>检测</font>-镜头的<font color='red'>相关</font>选择及特性
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved