TV和显示器背光、路灯、停车场照明经常使用长串LED,这类系统需要一个能够产生高压的电流驱动器。本参考设计利用MAX16834构建了一个这样的驱动器,能够获得非常高的调光比。
该参考设计利用MAX16834构建一个boost LED驱动器,用于驱动长串LED。适用于大尺寸LCD TV或显示器的LED背光、路灯以及停车场照明。
VIN:24VDC ±5% (1.22A)
VLED配置:23个串联LED (75V),350mA。
调光:脉冲导通时间可低至3.33µs (调光时钟频率 = 100Hz时,调光比为3000:1)。
注:已搭建该设计电路并经过测试,但未进行详细测试,具体应用可能存在细微差别,有待改进。
详细图片(PDF,3.53MB)
图1. LED驱动器电路板
详细图片(PDF,295kB)
图2. LED驱动器原理图
详细图片(PDF,2.85MB)
图3. LED驱动器布局
详细图片(PDF,1.3MB)
图4. 材料清单
详细图片(PDF,900kB)
图5. 设计表格,如需获取该电子表格用于您的设计,请与当地的Maxim销售办事处联系。
图6. 漏极电压和检流电阻的电压(50mΩ)
图7. 漏极电压的上升时间
图8. 输出电压(交流耦合)和检流电阻的电压
图9. 高调光比(导通时间 < 4µs)
图10. 电感温度的上升,计算器由Coilcraft®提供。
关键字:LED boost 驱动器
编辑:神话 引用地址:长串LED boost驱动器(使用铝电解电容)
该参考设计利用MAX16834构建一个boost LED驱动器,用于驱动长串LED。适用于大尺寸LCD TV或显示器的LED背光、路灯以及停车场照明。
VIN:24VDC ±5% (1.22A)
VLED配置:23个串联LED (75V),350mA。
调光:脉冲导通时间可低至3.33µs (调光时钟频率 = 100Hz时,调光比为3000:1)。
注:已搭建该设计电路并经过测试,但未进行详细测试,具体应用可能存在细微差别,有待改进。
详细图片(PDF,3.53MB)
图1. LED驱动器电路板
详细图片(PDF,295kB)
图2. LED驱动器原理图
详细图片(PDF,2.85MB)
图3. LED驱动器布局
详细图片(PDF,1.3MB)
图4. 材料清单
详细图片(PDF,900kB)
图5. 设计表格,如需获取该电子表格用于您的设计,请与当地的Maxim销售办事处联系。
图6. 漏极电压和检流电阻的电压(50mΩ)
图7. 漏极电压的上升时间
图8. 输出电压(交流耦合)和检流电阻的电压
图9. 高调光比(导通时间 < 4µs)
图10. 电感温度的上升,计算器由Coilcraft®提供。
电路说明
概述
该参考设计为驱动长串LED提供高压boost电流源,适用于LCD TV背光、LCD监视器背光、路灯、停车场照明等。长串LED驱动是一种高性价比LED驱动方案。另外,由于LED具有完全相同的电流,可以很好地控制亮度变化。设计采用24V输入,提供高达80V的LED输出,能够为LED串提供高达350mA的电流。测得的输入功率为29.3W,输出功率为26.4W,效率大约为90%。PCB
印刷电路板(PCB)是用于MAX16834升压设计的通用电路板(图1和图3)。因此,电路板中有许多短路或未组装的元件。原理图(图2)中给出了这些元件。图4所示为该设计的材料清单。拓扑结构
本设计采用300kHz非连续boost调节器。图5所示电子表格显示了计算得出的MOSFET和电感的RMS电流、峰值电流。不可否认,非连续工作模式具有一些缺点,MOSFET和电感电流较大。然而,由于MOSFET (Q1)导通时输出电流基本为零,输出二极管(D2)的反向恢复损耗极小。这一优势弥补了设计中的不足,因为反向恢复电流产生的过热和噪声很难控制。检查图6所示电路波形,可以发现MOSFET的导通时间大约为1.6µs。一旦断开MOSFET,电感连接到输出电容,漏极电压将跳至75V并保持大约1µs的时间。此后,电感能量基本耗尽,在随后的1微秒内,电感和MOSFET的输出电容开始自激,直到下一个导通周期。MOSFET驱动
由于采用非连续设计,MOSFET峰值电流高于连续工作模式下电流的两倍。然而,由于MOSFET导通期间没有电流通过,只有断开期间才会出现开关损耗。MAX16834为MOSFET提供足够的驱动,可以在大约20ns内断开开关(图7),因此温度上升的幅度较小。如果系统存在EMI问题,可以更改MOSFET栅极的串联电阻和二极管,以调整开关时间。必要时,将第二个MOSFET (Q2)与Q1并联,以减少温升。输出电容
驱动器使用寿命较长的电解电容作为输入和输出电容。电解电容器的耐用性不及陶瓷电容,且尺寸较大,但能够以较低成本提供充足的电容量。为了控制电路高度(10mm),电解电容以水平方向安装在电路板上。输入、输出电容在+105°C条件下的额定使用寿命分别为4000小时和8000小时。通常,环境温度每降低10°C,电解电容的使用寿命延长一倍。这意味着在+65°C环境温度下,输入/输出电容的预期寿命分别为64000小时/128000小时。图5电子表格显示,只需大约6µF的输出电容即可达到所要求的输出电压纹波。由于电解电容器的纹波电流容量有限,本设计使用了两个47µF电容。使用多个电容能够消除大部分开关频率的纹波电压(图8)。但由于电容选择了具有较高等效串联电感(ESL)的电解电容,无法完全滤除MOSFET开关断开时所产生的电路噪声。在输出端添加陶瓷电容或低Q值LC滤波器可以在一定程度上解决这一问题。任何元件都需要付出一定的成本,在安装之前应首先确定是否存在与高频尖峰信号。调光
MAX16834非常适合调光。当PWMDIM (IC的第10引脚)为低电平时,会产生以下三个操作:首先,开关MOSFET (Q1)的栅极驱动(第13引脚)变为低电平,避免额外能量传送给LED串;其次,调光MOSFET (Q3)的栅极驱动(第18引脚)变为低电平,可以立即降低LED串的电流,而且调光MOSFET可以在断开期间保持输出电容的电压恒定;最后,为了保持补偿电容的稳定电压,COMP (第3引脚)变为高阻。COMP引脚的高阻可确保IC在PWMDIM返回高电平后立即以正确的占空比开始工作。上述操作以及非连续工作模式中在每个周期开始时电感电流为零,使得PWM具有极短的导通时间,因此可以获得较高的调光高。调光比仅受限于主开关驱动器的频率。由于本设计的工作频率为300kHz,PWM最短导通时间约为3.33µs,意味着调光比可以达到1500:1 (200Hz调光频率)。图9给出了导通时间低于4µs时,LED串的电流。LED串电流符合要求,可以提供最高350mA的电流。OVP
如果LED串开路,MAX16834的过压保护(OVP)电路会在下次导通前将驱动器断开大约400ms。本设计的OVP阈值设为101V。FAULT#
MAX16834提供一路FAULT#输出信号。一旦检测到内部故障(过流或过压),该输出将变为低电平。故障解除后,FAULT#即可恢复到高电平。FAULT#不会锁定。温升
由于电路高效(大约90%)工作,驱动元件的温度不会升高。电感则例外,其温度上升幅度可以达到+49°C,高于图10中Coilcraft给出的+27°C预测温度。当峰值电流在RMS电流两倍以上时(非连续设计会出现这种情况),预测温度偏差较大。高温环境下,需要使用汽车级电感(+125°C)或使用两个串联的6µH电感。常温或较低温度环境下,一个12µH电感即足以满足要求。温度测量
使用实际的LED负载测量以下温度:VIN: | 24VDC | |
Ambient: | +22°C | ΔT |
L1: | +71°C | 49°C |
D2: | +43°C | 21°C |
Q2: | +38°C | 16°C |
Q3: | +34°C | 12°C |
加电过程
- 在LED+焊盘和LED-焊盘之间连接最多23个串联的LED。
- 在VIN焊盘和GND焊盘之间连接24V/2A电源。
- 如果需要调光,在DIM IN和GND焊盘间加载一个PWM信号(0至5V)。
- 接通24V电源。
- 根据需要调整PWM占空比,进行调光。
上一篇:高亮度LED在汽车照明应用中的若干关键问题
下一篇:采用RC正弦振荡电路制作的电子琴设计
推荐阅读最新更新时间:2023-10-12 20:19
解析大功率LED球泡灯散热问题
当今 LED 白光产品被逐渐运用于各大领域投入使用,人们在感受其大功率LED白光带来的惊人快感同时也在担心其存在的种种实际问题!首先从大功率LED白光本身性质来说。大功率LED仍旧存在着发光均一性不佳、封闭材料的寿命不长尤其是其 LED芯片 散热问题很难得到很好的解决,而无法发挥白光LED被期待的应用优点。 其次从大功率LED白光市场价格来说。当今大功率LED还是一种贵族式的白光产品,因为大功率产品的价格还是过高,而且技术上还是有待完善,所以说大功率白光LED产品不是谁想用就能够用的。下面分解下大功率LED散热的相关问题。 近些年在业界专家的努力下对大功率LED芯片散热问题提出了一下几点改善方案:1.通过提高LED晶片面积
[电源管理]
LED显示屏二次开发接口的设计方案
引言
在LED显示屏工程应用中,有单块显示屏项目,但更多的是多块显示屏项目。对于单块显示屏,直接使用厂商配置的控制软件就满足要求了;但对于多块显示屏,尤其是系统集成项目,厂商配置的控制软件就很难满足要求。这是因为,首先,厂商配置的控制软件一般只实现通用的功能,对个性化的功能很难满足要求,例如集成项目需要与后台数据库进行连接,实现实时信息发布,一般控制软件很难提供此项功能;其次,对于集成项目而言,显示屏信息发布仅是其中一个组成部分,需要统一的控制和界面风格;再次,在一个大的集成项目中,可能有多家厂商中标,或工程实现多年后更换或添加其它厂商的产品,而不同厂商的实现技术可能有所差异。
因此,为了满足LED显示屏在工程中的应用
[电源管理]
新型固态照明技术需引入智能化控制方案
近年来,新型固态照明(SSL)解决方案能源效率更高、功能也更加强化,特别是功率发光二极管(LED)的导入更造成照明市场的重大变革。在众多垂直应用领域如号志灯、汽车应用和液晶电视(LCD TV)背光应用,LED成为令人无法抗拒的替代方案。然而,将LED广泛应用于普通照明却并非易事,SSL解决方案的成本和效能无疑将持续改进,希望在2010年得以普遍采纳。
SSL抢攻普通照明市场
新型固态照明转向普通照明市场的问题在于市场的容量及惯性,其它高效照明技术在近几年也尝试进入普通照明市场,但多数都没有成功。一种新照明技术要在复杂的市场中占有一席之地必须克服种种阻碍,而紧密型荧光灯的正是一例。其与旧产品的兼容性需求也许
[电源管理]
LED成像分布光度计的研究
本文探讨了目前LED分布光度计的发展状况,主要是对基于成像光度学,采用CCD或是数码相机作为分布光度测量手段的仪器进行了分析和研究。此研究根据LED为半面发光的特点,采用抛物面反射器的设置,对LED的发光进行聚光反射,LED方向可通过步进马达进行一定角度的转换,从而得到不同角度位置的光斑,使用CCD或是数码相机进行测试。得到LED反射的发光光斑后,通过合适的图像处理,可根据光斑得到LED的配光曲线。 1引言 灯具分布光度计是一种大型的精密光学测试设备,是灯具分布光度测量中必备的重要设备。传统的分布光度计主要为机械式结构,通过机械控制探头旋转测量整个三维空问的灯具光强分布。目前在发展中的这类传统分布光度计主要有旋转反光镜式分布光度计
[测试测量]
伺服驱动器位置控制中的“电子齿轮”
伺服驱动器生产商给出的电子齿轮的表达式为分数,其分子和分母分别被定义为两个可以设定的用户参数: 一.负载转速电机转速(俗称速比)习惯上这是由机械角度考虑决定的,但是由于它是电子齿轮的组成部分,在数值上应尽量选取整数,这一点对于旋转工作台类机械而言尤为突出。 二.负载轴转一周的移动量对于不同工序要求的机械系统,负载轴一转完成的移动量不一样,丝杆类行进的是螺旋长度;圆台类旋转的是一周角度;传送类则是负载轴的周长,等等。它是设备功能决定的,选择余地不大。 三.伺服电机编码器分辨率编码器是伺服电机乃至伺服系统精确定位的关键部件,因为伺服电机接收脉冲每旋转一个角度,编码器就会发出对应数量的脉冲,回馈给伺服驱动器,与伺
[嵌入式]
LED光源在矿井工作面照明灯中的应用
0 引言
近年连续几起特大型矿难,使国家和政府对煤矿安全生产工作极为重视,国家对煤矿电气设备加强把关,提倡研究开发本质安全型产品,以提高安全生产条件。本质安全型是指 电路 、系统及设备在正常状态下和规定的故障状态下产生的任何电火花或任何热效应都不能引起规定的爆炸混合物爆炸的电气设备。这种设备的防爆原理是设法减小电路火花的能量及元件上的温度,使其不能点燃矿井中爆炸性混合物,达到防爆目的。这类设备产生的明火花不会点燃爆炸性混合物,无须隔爆外壳。其体积小,重量轻,便于携带,而且安全程度高。要使电路火花不点燃爆炸性混合物,这种电路就只能是弱电系统。LED灯属节能、隔爆兼本质安全型,本文对LED灯隔爆兼本安驱动电路作了设计并对小
[电源管理]
基于STM32利用按键点亮LED灯
基于STM32利用按键点亮LED灯的基本步骤: (1)打开stm32CubeMX,创建新工程文件 (2)选择需要的芯片,本次实验采用的是STM32F411RETx (3)黄色代表可被使用的引脚,绿色代表已被确定功能的引脚。左侧设置栏中的红色部分表示:IO口复用造成的重叠,以至不能继续使用。 (4)选好芯片,设置好相关系数参量后,选择与keil5相对应的MDK—ARM V5。 源程序: 1.按键按下LED灯点亮 int main { if(HAL_GPIO_ReadPin(GPIOC,GPIO_PIN_13) == 0){ HAL_Delay(10); //延时去抖
[单片机]
德州仪器针对工业应用推出模拟电流/电压输出驱动器
德州仪器(TI)日前宣布推出一款针对工业级可编程逻辑控制器(PLC)等工业应用与工艺控制设备的数控电流/电压输出驱动器。XTR300的输出电压高达±17V,电流达到±24mA,可满足几乎所有标准模拟信号的传输要求。由于该器件能够对电压或电流输出进行数字选择,因此不再需要占用空间的离散电路(discrete circuitry) 系统以及笨拙的引脚跨接配置方案。
XTR300的内部故障检测电路系统可数字化显示线路/负载故障,其中包括线缆或远程负载(remotely-located load)中的短路或开路。为了感测输出电压,该器件采用一款仪表放大器,与该放大器连接后可实现4线负载连接,以精确控制远程负载下的电压。该仪表放大器还
[新品]
小广播
热门活动
换一批
更多
最新模拟电子文章
更多精选电路图
更多热门文章
更多每日新闻
- CGD和Qorvo将共同革新电机控制解决方案
- 是德科技 FieldFox 手持式分析仪配合 VDI 扩频模块,实现毫米波分析功能
- 贸泽开售可精确测量CO2水平的 英飞凌PASCO2V15 XENSIV PAS CO2 5V传感器
- 玩法进阶,浩亭让您的PCB板端连接达到新高度!
- 长城汽车研发新篇章:固态电池技术引领未来
- 纳芯微提供全场景GaN驱动IC解决方案
- 解读华为固态电池新专利,2030 叫板宁德时代?
- 让纯电/插混车抓狂?中企推全球首款-40℃可放电增混电池,不怕冷
- 智驾域控知多少:中低端车型加速上车,行泊一体方案占主体
- Foresight推出六款先进立体传感器套件 彻底改变工业和汽车3D感知
更多往期活动
11月15日历史上的今天
厂商技术中心