基于bqTINY-II的电源管理模块设计

最新更新时间:2011-05-05来源: 互联网关键字:锂电池  USB电源  恒流充电  恒压充电 手机看文章 扫描二维码
随时随地手机看文章
O 引言
    便携式电子产品以电池作为电源。随着便携式产品的迅猛发展,各种电池的用量大增,并且开发出许多新型电池。近年来开发的高能量密度的锂离子电池具有体积小、容量大、待机时间长等特性,非常适合便携式系统的应用。

    在便携式电子产品的设计过程中,其电源管理模块的设计是十分重要的,因为这关系到整个系统工作的稳定性、持续性及快速恢复的能力问题。尤其是在使用锂电池作为系统电源时,其电源管理模块的作用更加突现。本文针对锂电池充电的特点,介绍了一种基于bqTINY—II的便携式电子心音检测仪电源管理模块解决方案。

1 锂离子电池充电过程
    锂系列(锂离子或锂聚合物)电池的充电过程分为3个阶段,如图1所示。

    第一阶段为检验和预充电阶段。该阶段主要的任务是:验证电池的温度并将其调整到适合快速充电的范围内;检测电池电压并将其提高到一个安全水平。温度检验和预充电提高了电池的安全性和使用寿命。

    第二阶段将以“1C”或略低的电流进行恒流充电。一旦电池达到它的电压限幅4.1V或4.2V.则已完成对大约70%的容量的充电,并进入第三阶段充电。

    第三阶段是对电池进行恒压充电,为了使安全性和电量达到最大化,需要将充电电压稳定在±1%的精度内。在恒压充电阶段,充电电流逐渐变小,并且在大多数情况下,当这个充电电流接近快速充电电流的10%,即C/10时,充电过程就结束了。

2 基于bqTINY—II的电源管理模块
    bqTINY-II是TI推出的电池充电管理芯片,它为电源系统设计人员带来一套集成解决方案。该芯片将自动电源选择、功率FET和电流传感器、高精准度的稳流和稳压能力、充电状态显示和充电中止等功能集为一体。它的一个重要特点是其可以选择两种充电模式,支持目前流行的USB接口充电。

    bqTINY-II支持三阶段的充电程序如图1所示,包括预充电调节阶段、恒流充电阶段以及许多设备制造商都要求的高精准度恒压充电阶段。hqTINY-1I的功耗极低,当系统未连接至电源时, bⅡ_rlNY.II就会进入低功耗休眠模式.它此时只会从电池汲取非常少的电量。

2.1 示意电路图
    该方案的示意电路如图2所示,该原理图以bq24020芯片为核心,配以必要的外围元器件。由于bq24020芯片的高集成化,使得所需的外围元器件大大减小,只需要3颗滤波电容和1颗用于设置AC预充率的电阻即可。

    图2所示电源管理模块有4个输入接口,4个输出接口和一个公共地。其中4个输入接口为:交流适配器AC接口、USB取电接口、充电使能信号CE、USB充电点设置;4个输出接口为:电源输出、电源温度信号输出、2个充电状态指示输出。

    面向应用系统的6个接口的参数说明如下:
    VCC为电池电压输出口,本电源模块通过该口输出电流,向应用系统供电。

    TS为电源温度状态信号输出,该信号由电池舱内的10 kΩ的负温度系数电热调节器所产生。应用系统可以通过将该接口的电压与电源地相比较来判断电源目前温度状况。

    CE为bqTINY—II芯片的使能控制信号,该信号为低电平时充电电路工作,高电平时芯片停止工作并进入低功耗休眠模式。

    ISET2接口用于控制USB充电时的参数选择。由于USB接口分为大功率(500mA)和小功率(100mA)两种,因此系统必须对其进行识别。识别完成后系统可以送低电平信号到该接口,使得芯片选择100mA模式进行充电或者送高电平选择500mA。如果系统不想使用USB模式进行充电.可以将该接口置为高阻态。

    STATl和STAT2为充电状态显示信号输出,该信号可以直接驱动多个LED进行状态指示或送至主处理器供其作进一步处理。

2.2 功能描述
    1)三阶段充电自动控制功能
    测申池的电压,如果低于预定阈值电压,就要先进行涓流充电,即电池预充阶段;
    电池电压上升到预设值(一般设为2.9V)时,充电方式改为全电流充电,即进入恒流充电阶段;
    当电池电压达到最大电压(锂离子电池一般为4.2V)时,开始改为恒压充电,此时充电电流逐渐降低,进入恒压充电阶段;
    当电流逐渐减小到预设值时,充电过程结束。

    2)供电电源自动选择
    bqTINY—II支持两种电源输入,默认的是把AC适配器作为输入源。如果没有AC适配器,芯片就会选择USB作为输入电源。如果两种输入都存在,则优先选择AC适配器。

    3)电池过热保护功能
    bqTINY—II通过测量脚TS和VSS之间的电压来监测电池的温度。bqTINY—II内部含有一个电流源,利用这个电流源为lO kΩ的负温度系数电热调节器提供偏置。bqTlNY—II通过比较脚TS和内部的阈值电压VLTF、VHTF来决定是否进行充电。当VTSVLTF时,就会停止充电。bqTINY—II只是通过关闭电源的FET来暂时停止充电时,并没有重新设置定时器。当温度恢复到正常值时,充电就会继续。用户可以通过两个额外的电阻来改变温度范围,如图3所示。

    4)电池预充机制
    在一个充电周期中,如果电池电压低于VLOWV,bqTINY—II就会利用预充电流Io(PRECHG)来对电池充电,这样就可把电池中过度放电的离子激活。在1SETl、VSS之间的电阻RSET决定了预充率。这种特性对于AC和USB充电都适用。

    hqTINY—II会在预充电期间设置一个定时器。如果在这个定时器设置的时间内电池电压没有达到V(LOWV),bqTINY-II将会停止充电,并且在脚STATx上显示出错信息。

    5)充电电压自动控制功能
    bqTINY—II的脚0UT直接和电池的正极相连.芯片通过此引脚采集电池的反馈电压,然后比较采集回的反馈电压和VSS引脚之间的电压差值,从而完成对电池电压的监测。当电池的电压上升到Vo(REG)时,恒压充电开始,充电电流开始减小。

    为了安全起见,在充电期间bqTINY—II也监视充电时间。如果在规定的充电时间t(CHG)期间未完成充电,bqTINY—II将会停止充电,并且在STATx引脚显示出错信息。

    6)充电状态监测(自动终止和重新充电功能)
    在恒压充电阶段bqTINY—II一直监视充电电流。一旦预设的,I(TAPER)被检测到.bqTINY—II就启动TAPER定时器(见图1)。当规定的时间到达后,充电过程结束。连接在ISETl和VSS之间的电阻RSET决定了 TAPER的长短。

    如果充电电流恢复到I(TAPER),bqTINY就会重置TaDer定时器。另外,如果充电电流小于I(TEMP),则会终止充电。这样就可以快速识别出电池的移出和已经充好的电池的插入。注意,这种特性就会使充电计时器和Taper定时器失去效用。连接在脚ISETl和VSS之间的电阻RSET决定了 TAPER电流的检测门限。

    充电完成后,bqTlNY-II一旦检测到脚OUT的电压低于VRCH,就会重新启动充电。这样就会让电池一直处于满充的状态。

    7)自动休眠功能
    当系统没有连接AC和USB电源时,bqTINY-II就会使模块进入低功耗休眠模式。这种特性可以防止没有外部输入时电池漏电.

    8)充电状态信号输出
    表1列出了STATl和STAT2的输出所表示的充电状态。这些状态引脚输出的信号可以用于驱动多个LED或送至主处理器作进一步处理。

2. 3 工作流程图
    电源管理模块的工作流程如图4所示。当有外部电源(AC或USB)输入,且模块使能信号CE为低电平时,芯片开始工作。

    芯片首先比较输入电压VIN与电池电压VOUT的高低。如果VOUT高于VIN则说明电池处于满充状态,此时电池不需充电,芯片转入休眠状态,否则进入充电程序。


    进入充电程序后模块首先检测电池电压VOUT是否高于进行电池快充所需电压VLOWN,如果满足条件则进入电池快充程序,即高精确准度恒压充电。否则模块对电池进行预充,即涓流充电,直到电池电压上升到VLOWV以上才进入快充程序。模块进入预充或快充程序时都会设置相应的计时器,以保护电池不被过充,提高电池使用寿命。

    电池如果预充超时,则模块进入充电错误处理程序,并在脚STATx输出出错信息。模块首先检测电池是否可用,即检测电池电压VOUT是否大于预先设定的电池再充电压VROHo条件满足则充电程序重新开始,否则激活计时器错误恢复电流等待条件满足。

    如果在恒流或恒压充电阶段计时器超时,则模块进入充电错误处理程序。如果在恒压充电后期电流逐渐减小到规定值阶段计时器超时,则充电程序结束。

3 应用实例
    便携式电子心音诊断仪是一种手持式心音辅助诊断设备,具有体积小、重量轻、使用方便、检测迅速、结果准确等优点,为医务工作者工作效率的提高起到了重要作用。本文介绍的电源管理模块在该设备的设计方案中得到了应用。该设备使用一块锂电池供电,采用bq24020作为电源管理核心控制芯片,通过STATl和STAT2端口向系统主控芯片输出电源状态,系统主控芯片通过输出CE信号控制bq24020进行工作,通过设置ISET2状态对USB充电模式进行选择。系统还可以检测Ts接口信号来获得电池温度状况。

4 结语
    baTINY—II的各项新特性使便携产品的充电控制和供电管理设计更加容易,对电池的保护也更加完善,无论从成本、性能还是系统可靠性方面来衡量,用bqTINY—II来设计的电源管理模块都能满足需求。本文所介绍的电源管理模块采用bqTINY—II系列芯片为核心,这是一种低成本锂离子充电方案,可以使用廉价的可插到墙上的稳压器或者使用当前流行的USB接口供电。由于它的高集成度和电路板占用空间小,几乎完全消除了高端设备的功率耗散问题,是一种理想的便携式设备电源管理模块。

关键字:锂电池  USB电源  恒流充电  恒压充电 编辑:神话 引用地址:基于bqTINY-II的电源管理模块设计

上一篇:基于大容量航空地面静止变频电源研制
下一篇:限制MOSFET的开关速度因素

推荐阅读最新更新时间:2023-10-13 10:49

锂电池组的主动电荷平衡
   电池系统架构   多年以来,镍镉电池和随后出现的镍氢电池技术一直占据市场主导地位。锂电池只是最近几年才进入市场。然而,凭借其突出的优越性能,其市场份额迅速攀升。锂电池具有惊人的蓄能容量,但单个电池的电压和电流都太低,不足以满足混合动力电机的需要。为增加电流需将多个电池并联起来,为获得更高的电压,则要把多个电池串联起来。   电池生产商通常以类似“3P 50S”字样的缩写词来描述电池的排列方式,“3P 50S”代表3个电池并联和50个电池串联。   对于有多个电池串联而言,模块化结构是电池管理的理想选择。例如,将多达12个电池串联起来,组成3P 12S阵列中的一个电池块(block)。这些电池的电荷由一
[电源管理]
<font color='red'>锂电池</font>组的主动电荷平衡
如何设置安全的锂电池保护电路
据统计,锂离子电池的全球需求已达13亿只,并随着应用领域的不断扩展,这一数据在逐年递增。正因如此,随着锂离子电池在各个行业用量的迅速激增,电池的安全性能也日益突出,不仅要求锂离子电池具有优异的充、放电性能,还要求具有更高的安全性能。那锂电池到底为什么发生起火甚至爆炸呢,有什么措施可以避免和杜绝吗?   笔记本电池爆炸,不仅同其中所用的锂电池电芯的生产工艺有关,也同电池内封装的电池保护板、笔记本电脑的充放电管理电路以及笔记本的散热设计有关。笔记本电脑不合理的散热设计和充放电管理,将使电池电芯过热,从而大大增加了电芯的活性,同时增加了爆炸、燃烧的几率。   锂电池材料构成及性能探析   首先我们来了解一下锂电池的材料构成,锂离子电
[电源管理]
锂电池保养新招
  手机、MP3、平板电脑、笔记本电脑、数码相机、掌机、导航仪等等,这些移动设备都在使用移动电池进行供电,而电池的续航能力也是最让人担心的问题。以手机为例,影响电池续航能力的除了系统耗电因素之外,如何保养电池也是必须了解的知识,除非你能忍受更换备用电池或者外挂电池,实际上像iPhONe这种手机连电池也不能更换。   电池的保养可能对单次充放电循环影响不大,但是时间长了之后就有对比,移动电源锂电池在使用一年或更长时间之后,电池容量都会有损耗,而保养较好的电池损耗情况会好很多。   之前在网上也流传有许多关于锂离子电池保养的方法,但是说法不一。比如新电池拿回来之后要充满12小时然后放空,连续三次才能激活最大容量,也有说法是
[电源管理]
采用M68HC08GZ16的电池管理系统设计
  电动汽车是指全部或部门由电机驱动的汽车。目前主要有纯电动汽车、混合电动车和燃料电池汽车3种类型。电动汽车目前常用的动力来自于铅酸电池、锂电池、镍氢电池等。   锂电池具有高电池单体电压、高比能量和高能量密度,是当前比能量最高的电池。但恰是由于锂电池的能量密度比较高,当发生误用或滥用时,将会引起安全事故。而电池治理系统能够解决这一题目。当电池处在充电过压或者是放电欠压的情况下,治理系统能够自动堵截充放电回路,其电量均衡的功能能够保证单节电池的压差维持在一个很小的范围内。此外,还具有过温、过流、剩余电量估测等功能。本文所设计的就是一种基于单片机的电池治理系统。   1 电池治理系统硬件构成   针对系统的硬件电路
[单片机]
采用M68HC08GZ16的电池管理系统设计
浅析新材料可使锂电池负极容量提高7倍
得克萨斯大学奥斯汀分校(University of Texas at Austin)的研究人员开发出一种可升级的化学方法,可以合成镀铜氢化非晶硅微粒(A-Si:hydrogenated amorphous silicon),采用的是多元醇(polyol)还原法,这种微粒可用作锂离子电池负极材料。氢存在于氢化非晶硅微粒中,有利于铜粒子成核;现在发现,氢化非晶硅微粒中的氢含量会显著影响氢化非晶硅微粒上的铜沉积量。   高分辨率界面光谱电化学研究采用原位拉曼光谱,说明铜涂层在氢化非晶硅上的作用。 有一篇论文发表在美国化学学会(ACS)3月8日的《材料化学》(Chemistry of Materials)杂志上,题为《铜涂层非晶硅粒子
[电源管理]
浅析新材料可使<font color='red'>锂电池</font>负极容量提高7倍
LANL研制出经济性更佳的EV锂电池
    来自LANL(洛斯阿拉莫斯国家实验室)的科学家们最近研发了一种含有氮元素的碳纳米管催化剂,这种催化剂是迄今为止的所有非稀有金属催化剂中,在碱性条件下最能激发氧还原反应的材料。而在反应物质量较大的情况下,这种稳定催化剂的催化效率甚至超过公认最高效的铂金催化剂。此新型催化剂是由世界知名的科学类杂志自然通讯报道的,它能够有效地提升锂空气电池、锌空气电池和碱性燃料电池的效能,方便风能和太阳能的应用,最终解决混合动力汽车和纯电动车的供能问题。     氧的电化学还原反应作为电化学装置中的核心过程,直接影响着使用液体或聚合物电解质的燃料电池、锌空气电池和锂空气电池的能量转换和储存效率。其中锌空气电池拥有巨大的开发前景,因为它的储能
[汽车电子]
可续航800公里 IBM发布会呼吸的锂电池
    环境问题和高油价在不断推动消费者考虑内燃机的替代品,各大汽车厂商和科技巨头们也把这件事情看做重点的研发对象,而其中最重要的一个难题就是车载电池续航里程短。目前电动车大多使用锂电池,一般情况下电池充满后,可行驶100英里左右(约160km)。其实早在2009年,IBM研发就已经启动了“电池500”项目。近日,IBM发布了会“呼吸”的锂电池。             该款锂电池在工作时通过吸入空气中的氧气,并将氧气与锂离子反应后产生电力,而在驻车充电时,电池会将氧气释放出来,如同“呼吸”一般。据消息称,这种会“呼吸”的锂电池一次充满电后,可供汽车行驶500英里(800km),续航能力较现在有大幅提升。    
[汽车电子]
8.4V/1A微打印机智能锂电池充电器设计
微打印机智能锂电池充电器—为满足IT行业便携式微打印机而设计的具有主从机电池识别的优先充电功能的锂电池智能充电器。解决了单一电池或多块电池同时在位,充电器只具备单一充电或同时充电的现状。大大提高了充电器在同体积同功率下的充电效率。增进了便携式产品对备用电池的利用效率。该技术规属于智能锂电池充电识别技术邻域。   一、8.4V/1A微打印机智能锂电池充电器设计方案要求   1) 充电器具备充电识别功能,分别通过两个指示灯对主从电池进行充电指示。   2) 在任何充电状态下,充电器都优先充打印机主机电池,充饱后再充从机电池:当从机电池在充电时,只要主机电池在位,充电器会自动识别,并转换给主机电池进行充电,充饱后再继续给从机电池进行充电
[电源管理]
8.4V/1A微打印机智能<font color='red'>锂电池</font>充电器设计
小广播
最新电源管理文章
换一换 更多 相关热搜器件
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved