消除模数转换中的数字反馈

最新更新时间:2011-11-09来源: 互联网关键字:模数转换  数字反馈 手机看文章 扫描二维码
随时随地手机看文章
消除模数转换链路中的数字反馈可能是一个挑战。在把数字输出与模拟信号链路及编码时钟隔离开来的板级设计过程中,即使在极为谨慎的情况下,模数转换器 (ADC) 输出频谱中也有可能观察到某些数字反馈的现象,从而导致转换器动态范围性能的下降。尽管良好的布局可以帮助减轻耦合回模拟输入的数字噪声的影响,但是这种办法也许不足以消除数字反馈这个问题。本文解释了数字反馈,并讨论了一种新的创新性 ADC,这种 ADC 内置了一些功能,在良好设计的布局也许不足以解决问题的情况下,这些功能可用来克服数字反馈。

  数字反馈

  数字反馈可能由于容性耦合、地电流或甚至波导动作而产生。即使是非常之小的反馈因素也会在 ADC 输出频谱中引起不希望有的音调。当一个无偏移的 ADC 接收一个 1LSB 量级的非常微弱信号时,这个 ADC 非常像一个具 120dB 增益的放大器:被驱动的所有输出将以与输入信号相同的频率提供极大的功率。

  数字反馈可能发生在器件级或系统级上。ADC 之前的宽带增益会加重这种影响。在低信号电平时,数字反馈可能以增大的奇次谐波形式出现,或者在延迟的反馈作用下改变噪声层的形状,或者以某种噪声层增大的形式出现。积分噪声性能通常不会受到太大的影响,不过在严重的情况下,噪声层的集中区域有可能被抬升 20dB 之多。如果有一个碰巧与抬高的噪声层区域撞上的窄带应用,那么这就意味着实实在在的 20dB 量级的信噪比 (SNR) 损失。

  在低信号电平下,如果失调电压很大 (以致代码不能穿过主要的位边界),则数字反馈被消除。在数字反馈难以控制的地方,可以考虑故意引入偏移电压。在高信号电平时,数字反馈一般在一定程度上被解除了相关性,因此不像在低信号电平时那么明显。但这时数字反馈仍然可能在某种程度上降低 SNR。

  在确定是否发生数字反馈的过程中,有意引入或清除失调电压的能力可以是一种有效的工具。假如,当存在一个低信号电平时,SNR 在引入失调电压的情况下有所改善,则表明正在发生数字反馈。

  

严重数字反馈的典型表现

 

  图 1:严重数字反馈的典型表现 (采用 6 级流水线时)

  图 1 显示了相对严重的高频数字反馈的模拟结果,该情形与我们研究过的客户的一些布局实例产生的结果非常相像。尽管是以更加严重的形式,但是这仍然代表了 ADC 本身的反馈机制。

  噪声层的整形与流水线延迟有关。具有偶数流水线级的 ADC 将在奈奎斯特频率下产生一个峰值 (而不是这里所观察到的为零)。如果所关注的频谱区域局限于 DC 和 1/4 奈奎斯特 (Nyquist) 频率之间,您可以认为数字反馈不是问题。具有一个较大流水线延迟的 ADC 将在这些特性之间呈现较短的时间间隔。

  进入编码时钟的数字反馈可能产生 2 阶和 4 阶甚至其他阶谐波,但是仅在较高信号电平时才比较明显。这与以下情况类似:耦合进时钟的模拟输入功率会对时钟进行相位调制,从而产生 2 阶谐波失真。进入放大器或进入非快速稳定网络的较低频率反馈,可能产生有一些零点、而不是抬高某些区域的噪声层,而且可能往往提高靠近 DC 或奈奎斯特频率的区域。实际情况也许涉及这些反馈机制中的若干种,这往往会产生更加复杂的噪声层。

  

进入未实现良好稳定网络中放大的较低频数字反馈示例

 

  图 2:进入未实现良好稳定网络中放大的较低频数字反馈示例

  图 2 仅示出了低频反馈的一个例子。这种工作特性可能并不稳定,因而会产生出现在不同位置的“零”。这些深谷零的位置提供了起因的相关线索,因为它们指示了在频域中的那些点上产生极小功率的重复图形。这可被看作是一个精细复杂的弛豫振荡器,涉及 ADC 之前的增益以及各种延迟 (包括流水线延迟)。一个高阶滤波器可以改变这种反馈行为,或者在采用具微秒延迟的 SAW 滤波器的情况下,可以相当有效地控制反馈行为。这种不稳定的反馈行为是由热噪声和输入电源激发的。对多次转换进行平均后,这类反馈行为可以产生相当一致的噪声层升高。例如,通过在驱动器放大器下面走数据总线,可以产生这类反馈行为。

  如果选择了不良的布局,则器件级和系统级上的数字反馈均会变得更糟。通常,给定的设计似乎将拥有兼顾这方面性能所需的全部特性。长的输出总线、以低特性阻抗布线以及在接收设备端很重的容性负载所有这一切都导致在输出级产生更大的脉冲电流。类似地,采用最大的 OVDD (数字输出电源电压) 最大限度地增大了数字电流。如果降低数字输出电压摆幅,就会相应地降低耦合回模拟电路的数字噪声。在电路板底面放置 OVDD 旁路、增大引线电感、大体积电容器、小直径通孔、厚的电路板、散热等等所有这一切都增大了电源轨至输出部分的阻抗,从而增大了跨地回路产生的信号。把 OGND 回接至一个接地不良的焊盘会使情况更糟。所有这些都将在 IC 基片上导致更多的接地反弹。使事情更糟的是,非对称地处理模拟和时钟输入也会导致数字反馈。对称地处理这些输入将保持采样过程或时钟接收器的共模抑制,并降低数字反馈。举一个不对称的例子: 将一个大测试焊盘放置在刚好位于ADC 下方的电路板底部的两个输入之一上,而将另一个测试焊盘安放于一定距离之外的另一个输入上,这种做法可以满足线路内测试人员的要求,但这种不对称性将会损害 ADC 性能。如果您必须提供探测,则把测试焊盘并排放置,使信号走线从中穿过,并在这些元件之后靠近 ADC 的地方布设终端。测试焊盘是无引线的电容器,如果这么用,而不是在不同长度的传输线尾端充当起缩短作用的容性组件,那么在 GHz 频率上也许是有益的。

  避免将一个输入布置在电路板顶面,另一个布置在电路板底面,这听起来也许是显然的事。除了与高频行为有关的非对称,这样的布置还会拾取布满电路板走线的两个平面之间的电位差。

  甚至不要用层的改变使差分放大器的输出反向。差分放大器的 + 输出不必一定驱动 ADC 的 + 输入,它们是可互换的。就 AC 应用而言,这一般来说没有关系。如果确实有关系,那么在驱动器之前实现。

  内部数字反馈大部分是一种高频现象。较低的采样率往往不那么成问题,除非到负载的距离增大了。如果从负载返回的反射信号在不到 1/2 个时钟周期内消失,那么它们就不会产生数字反馈。

新的 ADC 帮助克服数字反馈

  当数字输出回馈耦合至模拟电路部分时,数字反馈将出现,从而引起干扰。这种干扰在噪声层中表现为异常的整形,而在 ADC 输出频谱中则表现为寄生噪声。最糟糕的情况出现在中标度处,这采用 CMOS 输出模式,所有输出从 1 切换为 0 (2 进制补码格式) 或从 0 切换为 1,从而产生大的地电流,如图 3 所示。

  

ADC 中的数字反馈

 

  图 3:ADC 中的数字反馈

  跨过这个中标度点的小信号在所有这些数字信号输出的和中产生一个不相称的输出功率。

  凌力尔特已经推出了 LTC2261 系列超低功率 14 位 /12 位、25Msps 至 150Msps ADC,提供了一种新的和专有的功能,可在甚至良好的布局做法也无效的情况下减少数字反馈。交替位极性 (ABP) 模式在输出缓冲器之前使所有奇数位反相,以当工作在中标度周围时,实现数目相等的 1 和 0 的切换,从而有效地消除了引起数字反馈的大的地平面电流。

  

交替位极性模式

 

  图 4:交替位极性模式

  图 4 显示了怎样利用交替位极性模式改变数字输出字。消除地平面电流,以在小的输入信号跨过中标度时,减少反馈回 ADC 输入的能量。当这种模式启动时,所有奇数位 (D1、D3、D5、D7、D9、D11、D13) 在输出缓冲器之前都反相,如图 5 所示。偶数位 (D0、D2、D4、D6、D8、D10、D12) 不受影响。这种方法可降低电路板地平面中的数字电流,并降低数字噪声,尤其是在模拟输入信号非常小的情况下。通过使奇数位反相,在接收器端对数字输出解码。利用简单的 SPI 连接至 ADC,通过串行设定启动交替位极性模式。

  

对交替位极性模式数据解码

 

  图 5:对交替位极性模式数据解码

  除了交替位极性模式,还提供一个可选数据输出随机函数发生器,以减少来自数字输出的干扰。该随机函数发生器解除了数字输出的相关性,以减少出现重复码的可能性,从而避免重复码耦合回 ADC 输入,在输出频谱中引起不想要的音调。通过在数字输出被传送至芯片之外以前对其进行随机化处理,即可实现这些无用音调的随机化以减小此类音调的幅度。

  数字输出通过在 LSB (实际上是白噪声) 与所有其他数据输出位之间运用一种“异”逻辑运算来进行“随机化”。如欲解码,则采用逆运算;在 LSB 与所有其他位之间应用一种“异”运算。交替位极性模式与数字输出随机函数发生器无关 ━━ 这两种功能可以同时接通、同时不接通或任一接通。如示,两种数字反馈抑制方法 (交替位极性模式和数字输出随机函数发生器) 可使无寄生动态范围 (SFDR) 性能改善 10~15dB。

  图 6 示出了 LTC2261 对一个 70MHz IF、-65dBFS 输入信号进行采样并折返至 ADC 的第一奈奎斯特区域的 FFT 曲线图。左侧的曲线图示出了采用交替位极性模式 (数字输出随机函数发生器被停用) 时的 ADC 性能。噪声层中的凸起和输出频谱中的寄生噪声由数字反馈引起,输入端上的低电平信号使数字反馈有所衰减 (数字输出在全“1”和全“0”之间切换)。凸起的数目对应于 ADC 中流水线级的数目。右侧的 FFT 曲线图示出了同时采用交替位极性模式和随机函数发生器时 SFDR 性能的改善情况。噪声层现在很平坦,而且最高的寄生噪声减低了 12dB。

  

运用交替位极性模式和随机函数发生器时 LTC2261-14 的 SFDR 性能

 

  图 6:运用交替位极性模式和随机函数发生器时 LTC2261-14 的 SFDR 性能。

  Fs=125Msps,AIN= 70MHz、-65dBFS,平均 128k 点 FFT

  与今天市场上提供的同样采样率和分辨率的可比较 ADC 相比,LTC2261 系列 ADC 的功耗仅为其 1/3。LTC2261-14 为 14 位 125Msps ADC 仅从 1.8V 模拟电源消耗 127mW 功率,而 14 位 25Msps ADC LTC2256-14 仅消耗 30mW 功率 (参见图 7 以了解整个系列的器件)。为了进一步节省功率,还提供了打盹或休眠模式,以使功率降至 0.5mW。

  

超低功率 1.8V ADC 系列

 

  图 7:超低功率 1.8V ADC 系列

  LTC2261 是一款极端灵活的高速 ADC,具一个 SPI 兼容的接口,以设定和调节若干独特的设置。SPI 端口用于选择数字输出配置 (CMOS、DDR CMOS、DDR LVDS)、从 7 种 LVDS 输出电流设定值中进行选择,以根据所驱动的负载或距离决定最佳的功率要求,或启用任选的 LVDS 输出终端来帮助消减由接收器上的不良终接所引起的任何反射,从而节省了外部组件和板级空间。还可以选择测试模式,以允许用户验证 ADC 和处理器之间的连接。

  结论

  在采样情况下,良好布局仍然不能提供避免数字反馈所需的隔离,LTC2261 的内置功能可用来帮助抵消引发这种不良干扰的地电流。LTC2261 提供极高的灵活性和调节能力,以改善数据采集系统的性能。

关键字:模数转换  数字反馈 编辑:神话 引用地址:消除模数转换中的数字反馈

上一篇:一种单键开关机和复位方案
下一篇:基于DP标准发射端扩频时钟发生器电路设计

推荐阅读最新更新时间:2023-10-12 20:32

51单片机ADC0804模数转换学习
数模转换器ADC0804与单片机连接的原理图: 这是TX-1C实验板上的ADC0804和单片机连接的电路原理图。 左边的是ADC0804,右边的是74HC573锁存器,锁存器同时又连接了单片机没画出。ADC0804的引脚CSAD是片选引脚,因为是低电平有效所以当 送0时,我们就可以选中它工作了。RD也是低电平有效,是读信号的,WR也是低电平有效,当送0时就可以启动A/D开始转换了。INTR是转换结 束引脚,同样也是低电平有效,当INTR为0时,表示转换结束了。DB0-DB7是转换后的数字信号输出端口。AGND和DGND是接地的。CLK R和 CLK IN(即19和4引脚)是用来给A
[单片机]
51单片机ADC0804<font color='red'>模数转换</font>学习
解析模数转换器(ADC)不同类型数字输出
    在当今的模数转换器(ADC)领域,ADC制造商主要采用三类数字输出。这三种输出分别是:互补金属氧化物半导体(CMOS)、低压差分信号(LVDS)和电流模式逻辑(CML)。每类输出均基于采样速率、分辨率、输出数据速率和功耗要求,根据其工作方式和在ADC设计中的典型应用方式进行了论述。本文将讨论如何实现这些接口,以及各类输出的实际应用,并探讨选择和使用不同输出时需要注意的事项。此外还会给出关于如何处理这些输出的一般指南,并讨论各类输出的优劣。 基本知识 使用数字接口时,无论何种数字输出,都有一些相同的规则和事项需要考虑。首先,为实现最佳端接,接收器(FPGA或ASIC)端最好使用真正的电阻终端。接收器端的反
[模拟电子]
汽车用小型隔离放大器ACPL-782T
Avago公司的ACPL-782T是在电子马达驱动器和电池系统监控中使用的小型绝缘放大器,用于电压和电流检测。在典型应用中,马达电流流过一个外部电阻器,产生的模拟压降被ACPL-782T检测。在ACPL- 782T光隔离屏障的另一端,生成了差分输出电压。差分输出电压同马大电流成比例,并且利用在推荐应用电路中使用的光放大器可以将其转换为单端信号。由于在现代的开关转换马达驱动器中,在几十亿分之一秒内出现几百伏的电压摆动很常见,ACPL-782T可以忽略非常高(至少10kV/µs)的通用模式瞬间回转速度。 ACPL-782T隔离放大器的高CMR性能使其具有在高噪音马达控制环境中精确地监控马达电流和直流电压轨所需的精度和稳定性,可以在
[嵌入式]
选择用于电机控制应用的模数转换
设计师必须解决电流电压监控、光编码器反馈和旋转变压器――数字转换等难题         在电机控制应用中,设计师必须解决电流电压监控、光编码器反馈和旋转变压器-数字转换等难题。这些过程对需要精确控制电机转速和机械运动的应用来说非常重要,比如工业流水线机器人和汽车助力驾驶等应用。          这些应用中所用的转换器必须速度快、同步取样、单调运算、无流水线延迟、体积小、功耗低(见图1)。有些应用需要高压隔离和安全操作,有些应用必须连接旋转变压器型位置检测器。 逐次逼近A-D转换器          光编码器可以为伺服控制应用提供低成本、高精度的位置感应,比如,需要向控制器提供轴反馈以便为机械运动精确定位的工业机
[嵌入式]
飞思卡尔16位单片机(五)——ADC模数转换模块测试
一、介绍 ADC模块的作用是将模拟的电压信号转换为CPU可以处理的数字信号。一些低端的单片机上没有ADC模块,必须使用片外的ADC芯片,才能实现模数转换的功能。而飞思卡尔的单片机一般是集成了ADC模块的,这样使用起来就很方便了。虽然片内的ADC模块采集的精度不高,但是对于一般的用途已经足够用了。 XEP100的ADC模块由模拟量前端、模拟量转换、控制部分和结果存储四部分组成。ADC工作时由CPU发出启动命令,然后经过采样、模数转换,最后将结果保存到相应的寄存器。XEP100单片机ADC模块具有如下特性: ● 8位、10位和12位三种转换模式。 ● 采样缓冲器放大功能。 ● 可编程的采样时间。 ● 左/右对齐
[单片机]
飞思卡尔16位单片机(五)——ADC<font color='red'>模数转换</font>模块测试
掌握模数转换器的电源设计技巧
问题:开关电源(DC/DC转换器)真的会降低ADC的性能吗?   回答:工程师一般认为开关电源会降低ADC的性能,因此通常愿意选用低压差(LDO)线性稳压器,而不使用开关稳压器,但这种认识并非完全正确。LDO具有较低的纹波和噪声指标,但最近的研究表明,高效的开关稳压器也可用于一些转换器设计中,前提是设计师对电路拓扑有很好的理解,运用一些实用技巧,同时采取一些必要的防范措施。   首先是选择转换器,然后选择正确的开关稳压器,并不是任何开关稳压器都可以使用。从数据手册上查阅开关稳压器的噪声和纹波指标,以及开关频率。典型的开关稳压器在100kHz带宽范围内大概有10μV rms的噪声。假设它们都是白噪声,那么有关频带内的
[电源管理]
AVR单片机(学习ing)—(九)、ATMEGA16的模数转换器—01
九、ATMEGA16的模数转换器 九—(01)、ATMEGA16的模数转换器的介绍 1、介绍 1)特点: • 10 位 精度 • 0.5 LSB 的非线性度 • ± 2 LSB 的绝对精度 • 65 - 260 μs 的转换时间 • 最高分辨率时采样率高达15 kSPS • 8 路复用的单端输入通道 • 7 路差分输入通道 • 2 路可选增益为10x 与200x 的差分输入通道 • 可选的左对齐ADC 读数 • 0 - VCC 的 ADC 输入电压范围 • 可选的2.56V ADC 参考电压 • 连续转换或单次转换模式 • 通过自动触发中断源启动ADC 转换 • ADC 转换结束中断 • 基于睡眠模式的噪声抑制器 Note: 1.
[单片机]
AVR单片机(学习ing)—(九)、ATMEGA16的<font color='red'>模数转换</font>器—01
浅谈STM32 模数转换器 (ADC)(下)
温度传感器和VRENFINT通道框图 要使用传感器,请执行以下操作: 选择 ADC1_IN16 或 ADC1_IN18 输入通道。 选择一个采样时间,该采样时间要大于数据手册中所指定的最低采样时间。 在 ADC_CCR 寄存器中将 TSVREFE 位置 1,以便将温度传感器从掉电模式中唤醒。 通过将 SWSTART 位置 1(或通过外部触发)开始 ADC 转换 读取 ADC 数据寄存器中生成的 V SENSE 数据 使用以下公式计算温度: 温度(单位为 °C)= {(V SENSE — V 25 ) / Avg_Slope} + 25 其中: — V 25 = 25 °C 时的 V SENSE 值 — Avg
[单片机]
浅谈STM32 <font color='red'>模数转换</font>器 (ADC)(下)
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved