几种电源架构

最新更新时间:2011-12-14来源: 互联网关键字:电源  架构 手机看文章 扫描二维码
随时随地手机看文章

设计人员要为各种dsp、MCU、FPGA、ASIC、音频/视频和显示电路提供多电压、更大电流、更高效率、更低功耗、更低噪声、更小形状因数的电源和电源管理。为此出现了各种各样的电源架构来满足变化的电源管理要求。

  分布式电源架构

  分布式电源架构(Distributed Power Architecture,PDA)是基站用的第一代电源架构。PDA的一个实例示于图1。这种电源架构对每个电压轨用隔离(砖式)电源模块提供。当电压轨有限时,PDA工作良好,但每增加1个电压轨,其成本和PCB面积都显著增加。电压轨时序也是困难的,需要增加外部电路来解决电压轨时序,这也会增加成本和板面积。

  

DPA架构

 

  图1 典型的DPA架构

  中间总线架构

  为了克服DPA尺寸大和成本高的缺点,第二代系统采用中间总线(Intermediate Bus Architecture,IBA)架构。中间总线架构有固定电压(fixed voltage)IBA,非稳压(unregulated)IBA和准稳压(Quasi-regulated)IBA几种架构。图2所示的固定电压IBA采用单个隔离砖式电源模块和很多非隔离负载点(Pol)DC/DC变换器。Pol可以是电源模块(如TI公司的PTH系列),也可以是分立的降压变换器。隔音变换器的输入电压范围(36~75V或18~36V)与第一代相同。它所产生的中间总线电压稳定到3.3V,5V或12V。中间总线电压选择取决于系统设计师。这种设计的好处是:较小的PCB面积、较低的成本和较容易的电压时序(由于有自动跟踪特性)。这种电源架构使效率降低,每个电压需要两次变换。

  

 

  图2 固定电压中间总线架构

  为了满足微小区基站设计对高效率和小占位面积的要求,需增加隔离变换器效率,使其工作在固定占空比和不稳压输出,这就是非稳压中间总线结构。这种结构采用非稳压总线变换器,其输出电压是输入电压之比(例如TI公司ALD17 5:1变换器产生的输出电压是输入电压的五分之一)。用这种技术设计的150W系统的第一变换级用十六分之一砖式变换器效率可达96%。这种架构的限制是总线变换器的最大输入电压范围是36~55V。Pol的输入电压必须小于12V,才能使Pol产生1V或小于1V的输出电压。

  为了满足一些无线供应商坚持要保持36~75V传统宽输入电压规格的要求,电源供应商推出准稳压IBA。这种架构与非稳压IBA的主要差别是在输入电压超过55~60V范围,其输出电压稳定到10V左右。这种架构的缺点是隔离电源模块必须增大尺寸来实现稳压电路和在55V以上效率降低。

         新一代SoC电源管理

  APC(先进的电源管制器)靠动态或表态管理电源电压和漏电流,使SoC(系统芯片)能耗最佳化。采用两种技术:DVS(Danamic Voltage Scalling)和AVS(Adaptive Voltage Scalling)来管理SoC电源电压。APC适用两个软IP版本:APC1和APC2。APC1设计用于单SoC;APC2设计用更复杂SoC电源管理架构,支持个并行电压和时钟。APC2在内部共享电压域时具有控制多个独立时钟域的能力,这种能力特别重要,这可允许低功率工作。PWI2.0总线接口可使APC2连接到多个外设器件或另外SoC。图4示出采用APC2的双域SoC系统架构。SoC由两个主要逻辑单元(硬件加速器和CPU)组成。在每个电压域内有1个用于AVS控制的硬件性能监控器(HPM)。时钟管理单元为电压域和HPMs提供时钟信号。APC的4个主要功能单元示于APC2单元内。控制逻辑单元提供主接口(AMBA-APB)、CMU接口和中断管理服务。环路控制器管理AVS模式中的电压缩放。为DVS支持提供每个电压的频率—电压表。PWI2.0主机连接SoC到PMIC和其他外设。

  

SoC系统架构

 

  图4 采用APC2的双域SoC系统架构

  分比式电源架构

  分比式电源架构(Factorized Power Architecture,FPA)采用3个灵活的单元来重新规定每个变换级的范围,使得电源密度和效率都比较高。第1个单元是总线变换器模块(BCM),这是1个窄范围输入、非稳压、高效率总线变换器,它采用ZCS-ZVS正弦幅度变换器(SAC)提供隔离和电压变换。有高电压(高达384V)和中电压(48V)输入两个版本。FPA的第2个单元是预调器模块(PRM),这是1个高效率升压一降压变换器。FPA的第3个单元是电压变换模块(VTM),它与PRM组合在一起提供低电压输出(如需要可低到0.82V)。FPA单元为电源系统设计提供更大的灵活性、伸缩性和更高的效率(图3)。就尺寸而言,工作在3.5MHz有效频率的SAC,对于高电源变换在小封装中采用平面磁性元件,这种结构使功率密度大于1000W/in3。

  

FPA系统
关键字:电源  架构 编辑:神话 引用地址:几种电源架构

上一篇:数字电源实现系统低功耗设计
下一篇:电源完整性设计—怎样合理选择电容组合

推荐阅读最新更新时间:2023-10-13 10:55

LED电源次级恒流方案的总结
  随着LED照明现在越来越热,作为LED的生命支柱--LED驱动电源也越来越受到人们的关注。一直听到有很多人这么说:LED电源是个特殊的电源,跟普通电源有很大的不同,所以做LED电源要找专业的LED电源工程师。这种说法给LED电源蒙上了一层神秘的面纱,但作为做电源的专业人士,我们都知道LED电源其实没什么特别,其特点就是需要恒流限压,况且长期工作在满载情况下,所以对效率的要求比较高;有些电源由于结构尺寸的限制,对高度有要求。下面我就试着就目前中小功率的LED照明电源,谈谈次级恒流的一些常见的方法来一个总结;不一定很全面,也不一定很深入,不过总算能对一些初入行的工程师有些帮助。   可以毫不夸张的说,LED驱动电源将直接决定
[电源管理]
LED<font color='red'>电源</font>次级恒流方案的总结
2017英飞凌电源产品方案DIY设计大赛圆满落幕
2018年1月16日, 中国深圳讯——2017英飞凌电源产品方案DIY设计大赛今天在深圳圆满落幕, 这是自2015年以来由英飞凌科技(中国)有限公司主办的第三届赛事。本届大赛主题为创新、合作、共赢,旨在促进高效能的产品、方案与电源管理的广泛应用相结合, 提行业内电源管理产品设计创新能力,并适应本土市场的差异化的需求。本届大赛历时半年,吸引了来自全国范围百余个专业团体及个人的参与。在大赛闭幕式的同期,英飞凌还举办了颁奖仪式及电源技术沙龙等活动,以促进行业交流。 活动现场更是吸引了100多名工程师及3400多名观众收看直播。。 活动现场吸引了100多名工程师参与及3400多名观众收看直
[电源管理]
2017英飞凌<font color='red'>电源</font>产品方案DIY设计大赛圆满落幕
基于Cygnal单片机的智能电源管理系统的设计
   摘要 :本文介绍了基于Cygnal C8051F020单片机为主控单元的智能电源管理系统,详细阐述了该系统的工作原理、控制策略及其硬件、软件实现。本系统具有配置灵活、可扩展性强等特点,适用于便携式设备和无人值守设备的电源管理。    关键词 :电源管理; CYGNAL单片机;电量监测    1 、引言   便携式产品设计方案在电子产品设计中被广泛采用,其具备移动性强、便于携带、易操作等优点。便携式设备需要自身独立的内置电源管理系统,保证其在移动或无人职守状态下工作,一般采用可充电的锂离子电池或镍氢电池作为设备内置电源(连续使用三到五年不更换)。蓄电池的使用和保护方法及剩余电量监测对电池寿命有着重大的影响,是
[安防电子]
三星5nm工艺 高通骁龙875解密:八核心三丛集架构
在苹果秋季新品发布会上,iPad Air 4率先首发5nm处理器A14。   在A14公布之后,Redmi、realme等品牌先后预告新品将搭载5nm处理器。   毫无疑问,这颗5nm处理器便是即将在年底登场的高通骁龙875,这是2021年安卓旗舰的标配。   今天博主@i冰宇宙爆料,高通骁龙875、三星Exynos 1000都将采用“1+3+4”三丛集架构设计(E指代Exynos,S指代Snapdragon骁龙)。   具体来说,“1+3+4”指的是超大核、大核和能效核心。这次高通骁龙875基于三星5nm工艺制程打造,有望采用ARM最新一代超大核心Cortex X1,它拥有比Cortex A78更强悍的性能。   据A
[手机便携]
三星5nm工艺 高通骁龙875解密:八核心三丛集<font color='red'>架构</font>
UPS电源常用电池的分类与介绍
在UPS 电源 应用中常用的 电池 共有三种:包括开放型液体铅酸电池,免维护电池,镍铬电池,影响电池寿命的因素,不同种类电池也有各自的优点和缺点。现UPS厂家所配的电池一般为免维护电池,下面以免维护电池为主介绍三种电池的特点:   1:开放型液体铅酸电池 此类电池按结构可分为8-10年,15-20年寿命两种。由于此电池硫酸电解会产生腐蚀性气体,此类电池必须安装在通风并远离精密电子设备的房间,且电池房应铺设防腐蚀瓷砖。   由于蒸发的原因,开放电池需定期测量比重,加酸加水。此电池可忍受高温高压和深放电。电池房应禁烟并用开放型电池架。   此电池充电后不能运输,因而必须在现场安装后充电初充电一般需55-90小时。正常每节电
[电源管理]
基于Tansformer架构的ChatGPT原理解析
2022年11月30日,ChatGPT模型问世后,立刻在全球范围内掀起了轩然大波。无论从业者还是非从业者,都在热议ChatGPT极具冲击力的交互体验和惊人的生成内容。这使得广大群众重新认识到的潜力和价值。对于AI从业者来说,ChatGPT模型成为一种思路的扩充,大模型不再是刷榜的玩具,所有人都认识到高质量数据的重要性,并坚信“有多少人工,就会有多少”。 ChatGPT模型效果过于优秀,在许多任务上,即使是零样本或少样本数据也可以达到SOTA效果,使得很多人转向大模型的研究。 不仅Google提出了对标ChatGPT的Bard模型,国内涌现出了许多中文大模型,如百度的“文心一言”、阿里的“通义千问”、商汤的“日日
[机器人]
基于DSP的大功率开关电源的设计方案
本文介绍的基于DSP的大功率高频开关电源,充分发挥了DSP强大功能,可以对开关电源进行多方面控制,并且能够简化器件,降低成本,减少功耗,提高设备的可靠性。    1、电源的总体方案   本文所设计的开关 电源 的基本组成原理框图如图1所示,主要由功率主电路、DSP控制回路以及其它辅助电路组成。   开关电源的主要优点在 高频 上。通常滤波电感、电容和变压器在电源装置的体积和重量中占很大比例。从 电路 和 电机学 的有关知识可知,提高开关频率可以减小滤波器的参数,并使变压器小型化,从而有效地降低电源装置的体积和重量。以带有铁芯的变压器为例,分析如下:   图1系统组成框图    2、系统的
[电源管理]
基于DSP的大功率开关<font color='red'>电源</font>的设计方案
SDS2000在开关电源分析中的应用
 电源是所有电子产品不可或缺的组成部分,电源分为 开关电源 、线性电源等类型,其中 开关电源 已经成为数字计算、网络通信系统中电源的主流架构。 开关电源 的好坏关系到产品的整体性能。因此,在研发和生产测试中对于电源的精确分析显得尤为重要。SIGLENT推出的 SDS2000 超级荧光示波器配备强大的电源分析模块,支持绝大部分电源性能指标的精确测试测量。下面将通过分析电源板输入模块,给大家详细介绍 SDS2000 的电源分析功能。  以电源演示版STBX为例,其物理视图如图1所示:    图1 STBX STBX电路原理图如图2所示: 图2 原理图   在进行操作之前,首先应检查示波器、电源演示板是否运行良好
[电源管理]
SDS2000在开关<font color='red'>电源</font>分析中的应用
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved