推荐阅读最新更新时间:2023-10-12 20:33
高压放大器ATA-4052在压电陶瓷大功率测试系统中的应用
实验名称:高压放大器在压电陶瓷大功率测试系统中的应用 实验目的:在高振速下测试获得大功率的机械品质因数,客观的反应压电元件应用时的性能。 实验设备:信号发生器,电压/电流探针,计算机,ATA-4052高压放大器,数字示波器,激光测振仪,夹具与压电陶瓷样品等。 实验过程:测试系统主要包括信号发生器、高压放大器、数字示波器、电压/电流探针、激光多普勒测速仪、计算机控制系统及软件等。在测试中,计算机控制软件发出指令,信号发生器获取指令后触发一个初始的正弦信号,经高压放大器放大之后施加在待测样品上,引起样品振动。样品振动过程中,激光多普勒振动测速仪监测其振动速度,探针采集样品两端的电压或通过样品的电流。二者测试结果经过示波器采
[测试测量]
无源压电陶瓷发光二极管试电笔
本文介绍一种新颖的低压测电笔,其功能和使用方法与传统的氖管测电笔完全相同,它在试电时不需工作电源,只靠微弱的测试电流就能使发光二极管闪烁、压电陶瓷片发声,以声光双指示的形式显示测试点带电与否,既使试电显示更醒目,又克服了氖管漏气失效等缺点,实现了无源试电显示器件的固体化。 众所周知,测电笔允许通过的测试电流一般为微安级。这么小的电流不可能直接推动发光管发光及压电陶瓷发声,但从能量的角度看,氖管的起辉电压在 100V 左右,起辉电流按 1 ¨ A 计,则其最小发光功率为 O . 1mW 而发光二极管的导通电压为 1 . 6V ~ 2V ,最小发光电流可低至 0 . 1mA 以下,其最小发光功率约 O . 16mW ,与氖管的
[电源管理]
用伏安法测量电阻中电流表的内接和外接
伏安法测电阻中电流表的内接和外接
用伏安法测电阻有两种基本的线路:电流表内接(图4.7-2)和电流表外接(图4.7-3)。
设待测电阻为R,其上电压为UR,通过它的电流为IR;电压表电阻为RV,其上电压为UV,通过它的电流为IV;电流表电阻为RA,其上电压为UA,通过它的电流为IA。
在电流表内接电路中,UA=UR+UA,IA=IR,测量误差的来源在于电压表读数大于R两端的电压,由R=UV/IA计算出的阻值比真实值偏大。当R RA时,U UA,即U UV,测量结果不致引起太大的误差。
在电流表外接法电路中,UV=UR,IA=IR+IV。测量误差的来源在于电流表读数IA大于
[测试测量]
基于串行通信的压电陶瓷驱动器的设计
压电陶瓷由于其奇妙的压电效应被科学家们应用在与人们生活密切相关的领域,以实现能量转换、传感、驱动等功能。压电陶瓷在电场作用下产生的形变量很小,最多不超过本身尺寸的千万分之一。利用这微小的变化可以制作精确控制机构——压电驱动器,对于精密仪器和机械的控制等领域作用巨大。压电驱动器具有很高的位移分辨率以及抗干扰能力,并且控制方法简单,非常适用于微位移驱动,目前已被广泛应用于国防、生物医学、光电子等诸多领域 。调节压电陶瓷上的电压可以采用手动和计算机控制的方式,随着高性能D/A芯片的应用,使得计算机控制更加精确。计算机和外部电路(含单片机)的通信可以通过串口来实现。由于串行通信 具有高效可靠、价格便宜、遵循统一的标准等特点,使得串
[电源管理]
基于LabView8.5和PA96的压电陶瓷致动器驱动电源
压电陶瓷致动器是近年发展起来的新型微位移器件,具有体积小、推力大、精度及位移分辨率高、频率响应快等特点。它在使用中无噪声、不发热,是理想的微位移器,已在航空航天、精密测量、机器人及精密加工等领域得到广泛应用。驱动电源的性能对压电陶瓷致动器的影响很大,近年来国内对静态压电陶瓷驱动电源的研制取得了一定的进展,但大部分压电陶瓷驱动电源都是由分立性器件组成,结构较复杂,而且容易产生自激振荡,对电源的稳定性会产生影响。而采用高压运放的驱动电源,分辨率能达到mV级,输出纹波较小,不仅提高了电路集成度,而且可靠性也得到加强,因此可用于驱动压电陶瓷致动器。
压电陶瓷致动器驱动电源 1压电陶瓷致动器对驱动电源的要求 压电陶瓷致动器的驱动电源应
[电源管理]
用伏安法测量电阻中电流表的内接和外接
伏安法测电阻中电流表的内接和外接
用伏安法测 电阻 有两种基本的线路:电流表内接(图4.7-2)和电流表外接(图4.7-3)。 设待测电阻为R,其上电压为UR,通过它的电流为IR;电压表电阻为RV,其上电压为UV,通过它的电流为IV;电流表电阻为RA,其上电压为UA,通过它的电流为IA。 在电流表内接电路中,UA=UR+UA,IA=IR,测量误差的来源在于电压表读数大于R两端的电压,由R=UV/IA计算出的阻值比真实值偏大。当R RA时,U UA,即U≈UV,测量结果不致引起太大的误差。
在电流表外接法电路中,UV=UR,IA=IR+IV。测量误差的来源在于电流表读数IA大于通过R的电流IR,所以由R=UV/
[模拟电子]
基于Zynq压电陶瓷传感器的高精度采集系统设计
引言
压电陶瓷(Piezoelectric,PZT)以其特有的体积小、响应快、精度高和微动作功能而成为近年来天文光学精密测量中广泛应用的材料之一。因此,其采集精度和实时性是其关键技术之一。本设计以Xilinx公司的Zynq-7000双核ARM处理器作为设计平台,实现对PZT的高速和高精度采集。Zynq是以ARM为核心、以FPGA作为可编程外设的全新架构处理器,其ARM核是由2个Cortex A9 CPU组成的AMP系统。
目前,PZT的采集系统大多采用PC机下的采集卡或者类似于单片机的系统设计,由于PC机系统的实时性比较差,单片机的数据处理能力比较弱,很难满足类似于天文光学测量系统的实时性要求,采用Zynq的PL部分做
[工业控制]