基于NCP1651控制器的90W反激式单级PFC变换器原理与

最新更新时间:2011-12-29来源: 互联网关键字:基于NCP1651  控制器的  PFC  变换器 手机看文章 扫描二维码
随时随地手机看文章

基于NCP1651控制器的90W反激式单级PFC变换器原理与设计

NCP1651是一种单级功率因数控制器。介绍了NCP165l的结构、主要特点及基于NCPl651的90W通用输入单级PFC变换器原理与设计。

关键词:NPCI65l;单级PFC;控制器;反激拓扑;设计 

0 引言 
  单级PFC的基本拓扑及其工作原理在《电源技术应用》等学术期刊中,已有许多文章对其进行了介绍。尽管单级PFC电路仪需一个功率升关,电路拓扑简单,效率较高,但单级PFC的实用电路却非常少见。众所周知,用于两级PFC电路的控制器lC品种和型号非常多,相关设计技术早已十分成熟,而单极PFC专用控制器芯片,长时间没有问世。迄今为止,单级PFC控制IC仅有两款:一个是数字单级PFC控制器iW2202,另一个则是安森美半导体公司推出的NCPl651。NCPl65l是一种适用于反激式拓扑的单级PFC控制器。基于NCPl65l的反激式隔离变换器,可提供中、高DC输出电压和50~250W的输出功率,满足IEC1000-3-2谐波电流限制要求,并能将初级侧电压限制在700V之内。 

1 NCPl65l的结构与主要特点 
  NCP1651采用16引脚SOIC封装,其中引脚14和15未连接。NCP1651的芯片电路组成与NCPl650的内部结构存在很多相同之处,其内部结构框图如图1所示。 



  NCP165I的各个引脚功能见表1。 

  NCPl65l是一种固定频率平均电流模式PWM单级PFC控制器,被用作驱动工作在连续导电模式(CCM)或不连续导电模式(DCM)的反激变换器拓扑,并编程平均输入电流跟随AC线路电压。利用平均电流模式控制CCM算法,可以限制峰值初级电流,提供接近于1的功率因数。固定频率操作,能使输入滤波器电路设计简化。NCPl65l内置高精度专利乘法器,与传统模拟乘法器比较,具有更优异的性能。NCPl65l提供逐周峰值和平均电流限制、Vcc欠电压锁定和过温度(门限为160℃,带30℃滞回)关闭等保护功能。NCP1651内置高压启动电路,可直接连接到桥式整流器输出端工作。在IC开始工作后,高压启动电路截止。 
  NCPl651的推出,标忐着单级PFC技术开始在中、低功率电平上进入了实用化阶段。 

2 基于NCPl65l的90W单级PFC变换器原理与设计 
2.1 基于NCPl65I的90W通用输入单级PFC变换器电路及其工作原理 
  由NCPl651组成的90W通用输入单级PFC反激式变换器电路如图2所示。该变换器的AC输入线路电压范围为85~265V.DC输出电压为48V,工作在CCM方式。 


  在系统加电之后,桥式整流器(D1~D4)输出经D7对电容C16充电。当C16上的电压达到17V的门限电平时,IC1(NCPl651)脚16导通,内部高压启动电路中的电流源从脚13流出,对连接在变压器T1偏置绕组(⑦与⑤之间)上的电容C21充电。当C21上的电压超过10.8V的导通门限电压时,IC1启动,变换器开始工作,IC1引脚Vcc上的所需电流,由T1偏置绕组、D9、C21和齐纳二极管D15组成的辅助电源供给。在TC1开始工作后,内部高压启动电路则截止。IC1的振荡器频率由脚3上的电容C3值确定。在C3=470 pF的条件下,开关频率为100 kHz。 
  S1源极电阻R5用作感测初级电流。在S1漏极上连接的阻尼电路中,D13和D14为瞬态电压抑制(TVS)二极管。前者击穿电压为214V,后者击穿电压为68V。IC1脚8上连接的晶体管Q1等组成外部关闭电路。次级侧的IC3(MC3303)为四运算放大器芯片。其中,lC3B作为误差放大器使用,lC3D被配置成差分放大器,IC3A和IC3C分别配置为输出欠电压和过电压比较器。IC2(TL431)为lC3B的同相端(脚5)和IC3A的反相输入端(脚2)提供2.5V的参考电压。输出电压(U0)经R33、R23和R24、R25组成的分压器分压,将误差放大器IC3B反相输入端(脚6)上的电压设置在2.5V。 
  电压调节环路的工作过程是:当输出电压低于其额定值(48V)时,在IC3B脚6上的电压将低于脚5上2.5V的参考电压,致使TC3B输出电压增加,光耦合器LED电流减小,从而引起光耦合器晶体管电流减小,IC1脚8上的电压升高。而IC1脚8上电压的提高,使内部参考乘法器输出增加,NCPl65l的PWM占空比增加。 
  欠电压比较器IC3A为光耦合器IC4提供驱动。在出现欠电压情况时,IC3A输出变低,IC4中LED电流减小,使NCPl651进入高占空比状态,迫使输出电压升至欠电压限制电平以上。 
  过电压比较器IC3C的输出与IC3B的输出进行“或”运算。在过电压情况下,IC3C输出变为OV,使IC4中LED电流达到最大值,占空比减小到零,直到输出电压降至过电压限制电平以下。
  IC3D被配置成差分放大器,用于感测DC输出电流,提供一个经二极管进行“或”运算的信号进入反馈分压器。过载电流限制被设置在满载的125%,即(P0/U0)1.25=(90/48)×1.25=2.34A。电阻R31和R32用作感测输出电流,R29、R30用作设置电流感测放大器增益。放大器增益为: 

  G=(R29/R30)+1=(3kΩ/0.3kΩ)+1=11 

  放大器输入电压为:2.34A×(R31+R32)=2.34×0.14Ω=0.33V。差分放大器输出电压为:0.33V×G=0.33V×11=3.63V。 
  当输出负载电流增加时,电流感测放大器输出也相应增加。当放大器输出电压与_二极管D12的电压降之差值高于2.5V时,误差放大器IC3B反相输入端上的电压被拉高,IC3B输出电压降低,IC4中LED电流增大,lC4中晶体管电流相应增加,NCPl65l脚8上的电压降低,占空比减小,从而实现限流过载保护。 
2.2 主要元件的选择 
  在功率元器件选择时,需要考虑初级侧电流。当变换器在CCM工作时,电流波形如图3所示。 
        

  在MOSFET(S1)导通期间,电流在初级侧流动。在MOSFET关断期间,电流在次级侧流动。 


2.2.2 变压器的选择 
  变压器T1是反激变换器中的关键元件。变压器初级与次级绕组之间的匝数比n=Np/Ns,直接影响初级侧的电压值。为了减小漏感产生的尖峰脉冲电压,应尽可能降低变压器漏感。 
  为了减小输出反射到初级的电压,选择匝数比n=4,初级Np=76匝,次级Ns=19匝。 
  为了减小漏感.选择TDK SRW42EC-U04H1/4宽窗口磁心,以减少绕组层数。同时,为了增强耦合,初级与次级绕组交错是有利的。具体绕制方法是:先绕初级的45匝(一层),接着绕次级19匝,然后再绕初级剩下的3l匝。按该法绕制,漏感仅为9μH。初级绕组的电感值Lp=1 mH。 

  如果把76匝初级绕组分两层绕完后再绕次级绕组19匝,漏感值将增加到37μH。 
2.2.3 功率MOSFET(S1)的选择 
  MOSFET的选择,首先应确定其额定值电压(VDS)。在MOSFET关断期间,漏极与源极之间的峰值电压为: 


  式中:Uin(max)=265V; 
Uf为次级整流二极管(D5)的导通压降,Uf=0.7V; 
Uspke为漏感产牛的尖峰脉冲电压,选择 
Uspike=130V,有足够的安全余量。 
  将已知数据代入式(4)得: 


  S1可选择SPAlIN80C3型N沟道MOSFET,其额定电压UDS=800V,额定电流ID=11A,导通态电阻RDS(on)=4.5Ω。 
2.2.4 输出电容器的选择 
  输出电容Co值由式(5)确定: 


  式中:TH为所需保持时间,即AC线路的周期时间,TH=1/50Hz=O.02s; 
Uo(min)为最小输出电压,选择Uo(min)=33V。 
  将相关数据代入式(5)得: 

  Co用两个1500μF/63V的电容并联而成,即在图2中,C22=C23=1500μF。 
2.2.5 电流感测电阻R5的选择 
  电流感测电阻R5的计算公式是: 


  电路中其它元件,可根据NCPl65l的芯片电路组成和电气参数确定其数值。 

3 结语 
  基于单级PFC控制器NCPl651的90W通用输入反激式变换器,仪需用一个功率开关和较少量的元件,就能获得高输入功率因数和低输入电流THD。在115V的AC输入电压和满载下,变换器PF=O.998,THD=3.12%;在230V的AC输入和满载下,PF=O.97l,THD=6.8%。从85V到230V的AC输入和从无载到满载变化时,输出电压调节率小于O.02%,输出电压纹波仅为2VP-P。NCPl651为设计分布式电源获得单级PFC和步降变换,提供了行之有效的创新方案。

关键字:基于NCP1651  控制器的  PFC  变换器 编辑:神话 引用地址:基于NCP1651控制器的90W反激式单级PFC变换器原理与

上一篇:NCP1651组成的90W通用输入单级PFC反激式变换器电路
下一篇:使用LNK362的输出6.2V、322mA的2W低成本反激式

推荐阅读最新更新时间:2023-10-13 10:56

MAX1169 ADC与PIC微控制器接口
本应用笔记介绍如何连接MAX1169模数转换器(ADC)至PIC微控制器。提供了对应PIC18F442的实例电路和软件。该软件包含了利用内部MSSP I2C*端口,以400kHz速率连接ADC至PIC微控制器的函数调用。 MAX1169是一款16位、低功耗ADC,具有I2C兼容的2线串行接口。MAX1169的接口可支持快速模式(400kHz)和高速模式(高达1.7MHz)。 本应用笔记包括实例应用电路和用于PIC18F442的软件。该软件提供了利用内部MSSP I2C端口,以400kHz速率连接ADC至PIC微控制器的函数调用。因为其它微控制器具有类似的片上外围设备,所以实例中所提供的I2C通信程序被有意拆分为单独的I2C函
[工业控制]
MAX1169 ADC与PIC微<font color='red'>控制器</font><font color='red'>的</font>接口
DCS控制器中采用ARM处理器冗余设计
在自动化的许多领域,有效性的要求越来越高,因而对自动化系统的容错水平的要求也变得越来越高,尤其在设备停机代价非常大的场合。为了满足这些严格的要求,在DCS系统中通常采用冗余技术,这样才能够满足这些领域所需要的安全性、可靠性和有效性的标准。 在DCS控制系统中,分布处理单元是系统关键的部分。当前这些分布处理单元的控制器往往是基于86系列CPU建构的,这种架构目前被广泛采用。但是由于86系列分布处理单元的特点,导致现在的控制器处理单元存在很多的缺点,如放热量大等。而且在封闭的环境中,这些问题始终很难解决。随着很多低功耗技术的发展和低功耗控制器的出现,分布处理单元的CPU可以有更多的选择,尤其是低功耗的控制器产生很少的热量,且可以
[单片机]
DCS<font color='red'>控制器</font>中采用ARM处理器<font color='red'>的</font>冗余设计
采用HC05/HC088位微控制器数字电容放电点火系统
引言 两化机动车:低座小摩托、摩托车、机动脚踏两用车,普遍使用电容放电点火(CDI)一种基于电容放电技术的引擎点火系统。点火系统将能量从磁电机转移到存储电容,然后通过升压变压器在火花塞处以高压脉冲形式释放出来,将汽缸中的混合烧油点烧。 目前,考虑到效率更高引擎设计的要求和污染控制中新的管理规定,变定时CDI已成为最经济实用的选择。在变定时CDI解决方案中,以监测引擎速度来提供火花的最佳定时。在空转速度状态,点火定时在压缩冲程中较迟产生,因此当活塞开始动和冲程时有充分时间完成烧烧;在高速状态,点火则在压缩冲程中较早产生。变定时可用MCU实现,如Motorola的廉价MC68HC705P6A。该MCU配置了带独立输入捕捉和输出
[传感技术]
高频开关电压模式PWM控制器
  PWM控制技术主要分为两种:一种是电压模式PWM控制技术;另一种是电流模式PWM控制技术。   开关电源最初采用的是电压模式PWM控制技术,其基本工作原理如图1所示。输出电压UOUT与基准电压相比较后得到误差信号Uerror。此误差电压与锯齿波发生器产生的锯齿波信号进行比较,由PWM比较器输出占空比变化的矩形波驱动信号,这就是电压模式PWM控制技术的工作原理。   由于此系统是单环控制系统,其最大的缺点是没有电流反馈信号。由于开关电源的电流都要流经电感,因此相应的电压信号会有一定的延迟。然而对于稳压电源来说,需要不断地调节输人电流,以适应输入电压的变化和负载的需求,从而达到稳定输出电压的目的。因此,仅采用采样输出电压的方法
[电源管理]
高频开关<font color='red'>的</font>电压模式PWM<font color='red'>控制器</font>
如何为电源系统开关控制器选择合适MOSFET?
  DC/DC开关控制器的MOSFET选择是一个复杂的过程。仅仅考虑MOSFET的额定电压和电流并不足以选择到合适的MOSFET。要想让MOSFET维持在规定范围以内,必须在低栅极电荷和低导通电阻之间取得平衡。在多负载 电源 系统中,这种情况会变得更加复杂。   DC/DC 开关电源 因其高效率而广泛应用于现代许多电子系统中。例如,同时拥有一个高侧FET和低侧FET的降压同步开关稳压器,如图1所示。这两个FET会根据控制器设置的占空比进行开关操作,旨在达到理想的输出电压。降压稳压器的占空比方程式如下:   图1:降压同步开关稳压器原理图   FET可能会集成到与控制器一样的同一块芯片中,从而实现一种最为简单的解决方案。但为了提
[电源管理]
如何为电源系统开关<font color='red'>控制器</font>选择合适<font color='red'>的</font>MOSFET?
半桥式变换器电路
图所示半桥式变换器中,变压器的一次侧在整个周期中都流过电流,磁心得到充分利用,对功率开关管的耐压要求较低,决不会超过线路峰值电压。与推挽式电路相比,若输出相同的功率,则开关晶体管必须流过2倍的电流。   在半桥式变换器电路中,因为变压器的电压已减少到UI/2,为了获得相同的功率,晶体管的工作电流将加倍。假定变换器的效率η=0.8,最大占空比Dmax=0.8,则晶体管的工作电流为:半桥式变换器的另一个优点是:它可以自动校正变压器磁心偏磁,避免变压器磁心饱和。 图 半桥式变换器电路   在设计开关电源时,还应考虑的是使用双极型晶体管还是MOSFET管,这两种晶体管各有优缺点。二者相比较,双极型晶体管价格较低,
[电源管理]
半桥式<font color='red'>变换器</font>电路
基于NCP1200A多路反激变换器研究
摘要:介绍了低功率通用离线式电源的脉宽调制电流型控制器NCP1200A的原理,并且通过所研制出的多路隔离反激变换器试验样机,及其试验结果来进一步说明此控制器所具有的优点。 关键词:电流模式控制;反激;前沿消隐;动态自供电 引言 反激变换器具有电路结构简单、输入输出电气隔离、电压调节范围宽、易于多路输出等特点,因而适合作为电力电子设备内的辅助开关电源。 电流控制型脉宽调制是一种新颖的控制技术,它克服了传统的电压控制型脉宽调制技术的缺点,使开关电源系统具有快速的瞬态响应、高度的稳定性、过载及短路保护简单等特点。NCP1200A是一种低功率通用离线电源的电流模式脉宽调制控制器,它代表了向超小型开关电源方向的重大飞跃,它内部包括定时元件、反
[电源管理]
一种基于STM32和FPGA多轴运动控制器设计与实现
引言 数控系统在工矿领域已得到广泛应用,计算机数控系统通过对数字化信息的处理和运算,并转化成脉冲信号,实现对电机的控制,进而控制数控机床动作和零件加工。随着嵌入式技术的发展,我们可以设计规模更小,成本更低,功能更特定的嵌入式系统来完成传统计算机数控系统所完成的工作。 1、设计方案 本系统以嵌入式处理器STM32和FPGA芯片为核心,运动控制方案中的处理部分都放在FPGA内部实现。这是1种硬件软化的方案,即具有软件可编程、可重构的特点,又有硬件那样高性能、高可靠、高一致性的优点。其系统原理框图如图1所示。 图1 系统原理 STM32从SD卡中读取数据文件并进行相关算法处理,通过键盘扫描电路设置系统加减速的初始速度、最大速度、
[单片机]
一种<font color='red'>基于</font>STM32和FPGA<font color='red'>的</font>多轴运动<font color='red'>控制器</font><font color='red'>的</font>设计与实现
小广播
最新电源管理文章

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved