一种有效的谐波抑制方案

最新更新时间:2012-01-29来源: 互联网关键字:谐波抑制  谐波调节器  非线性负载 手机看文章 扫描二维码
随时随地手机看文章

一种有效的谐波抑制方案

A Kind of Effective Plan to Restrain Harmonic

  在电力电网中,存在大量非线性负载,引起电网电流波形不再是正弦波。这一非正弦波可用傅里叶级数分解成为一个直流量,基波正弦量和一系列频率为基波频率整数倍的高次谐波正弦分量之和。对目前三相交流发电机组发出的电压而言,认为基波为正弦波,即波形中基本无直流量和高次谐波分量。但由于电力系统中存在着各式各样的谐波源,使得高次谐波的干扰成了当前电力系统中影响电能质量的一大“公害”,各国对电力电网电压正弦波形畸变的极限值都有明确的规定,要求用户对接入电网的设备产生的谐波应采取一定措施,进行抑制。

1高次谐波产生的原因及其对电网的危害

高次谐波产生的原因主要是由于电力系统中存在非性线元件及负载产生的。如:电容性负载、感性负载及开关变流设备,诸如计算机及外设、电动机、整流装置等。由于其为储能元件或变流装置,故使电压、电流波形发生畸变,见图1。

Zjf1.gif (4944 字节)

图1带有非线性负载时的电流波形

高次谐波电流通过变压器,可使变压器的铁芯损耗明显增加,从而变压器出现过热,效率降低,缩短变压器的寿命。高次谐波对电网的影响也是如此,电缆内耗加大,电缆发热,缩短电缆的使用寿命;对电动机影响更大,不仅损耗增加,还会使电动机转子振动;而高次谐波对电容的影响更为突出,含有高次谐波的电压加至电容两端时,由于电容器对高次谐波的阻抗很小,所以电容器很容易发生过负荷导致损坏。高次谐波的干扰,往往还会导致供电空气开关误动作,造成电网停电,严重影响用电设备的正常工作。同时,高次谐波对通讯设备也产生干扰信号。

对于电容负载:ZC=1/2πfC

当f=n×50(n=2、3……)中n很大时,由上式可见ZC很小。

2高次谐波的抑制方式

(1)三相整流变压器采用Y?△或△?Y,这样联接可以消除3的整数倍的高次谐波,电网中的谐波电流只有5、7、11、13等奇次谐波。

(2)增加整流变压器二次侧的相数。整流变压器二次侧的相数越多,整流波形的脉波数越多,奇数低的谐波被消去的也越多。

(3)装设分流滤波器,分流滤波器是由R、C、L等元件组成的。串联谐振电路一般采取三相星形联接,它往往接在大型整流设备与电网的联接处,见图2。

Zjf2.gif (7591 字节)

图2分流滤波器接线图

(4)装静止无功补偿装置

上述四种抑制方式尽管对电网的净化起了一定的作用,但它都有很大的局限性,不能对谐波全面管理或仅仅局限在很小的范围之内。这些方式都是被动的,不能随谐波变化而变化。

3一种新的谐波抑制方案

  随着科技的发展对谐波的抑制提出了新的设想,

它克服了以往滤波器仅固定在某些谐波频段,它采用如图3的拓扑类型。它对非线性负载产生的谐波进行采样、分析、建立频谱图,以此频谱图为依据向电网侧送一个与非线性负载产生的谐波相反的谐波,从而达到谐波抑制的效果。

Zjf3.gif (3178 字节)

图3有源谐波调节器的基本工作原理

据此原理推出了有源谐波调节器(ACTIVEHARMONICCONDITIONER)它能将2~25次谐波有效地抑制。可根据电网的情况调整电压与电流波形的相位角,修正电流波形,提高功率因数,有效地抑制谐波干扰。它的工作原理见图4。

Zjf4.gif (6376 字节)

图4有源谐波调节器工作原理框图

有源谐波调节器具有友好的用户界面,通过对话窗进行现场设置,真实地将用户现场实际状态反馈至有源谐波调节器中,让其通过采样拾取器实时捕捉谐波,全面有效地抑制电网中的谐波。该调节器还具有标准的RS232接口,可方便地将谐波信息与实时计算机通讯。

Zjf6.gif (5197 字节)

(a)无有源谐波调节器

(b)有有源谐波调节器

图5带有非线性负载(计算机等)的输入电流波形

图5为非线性负载经有源谐波调节器调节前(a)与调节后(b)的输入电流波形比较。可以看出,这种有源谐波调节器将大大抑制谐波,提高了功率因数,同时大大地减小损耗,大大地节约了能源,保障了电网线路的安全。利用该谐波调节器可全面解决电网造成的损失。

关键字:谐波抑制  谐波调节器  非线性负载 编辑:神话 引用地址:一种有效的谐波抑制方案

上一篇:电源技术的创新与发展
下一篇:电流型控制芯片的应用

推荐阅读最新更新时间:2023-10-13 10:56

变频器的谐波干扰与抑制办法
变频器中要进行大功率二极管整流、大功率晶体管逆变,结果是在输入输出回路产生电流高次谐波,干扰供电系统、负载及其他邻近电气设备。在实际使用过程中,经常遇到变频器谐波干扰问题,下面简单介绍谐波产生的机理、传播途径及有效抑制干扰的方法。   一、变频器谐波产生机理 变频器的主电路一般为交-直-交组成,外部输入380V/50Hz的工频电源经三相桥路不可控整流成直流电压信号,经滤波电容滤波及大功率晶体管开关元件逆变为频率可变的交流信号。在整流回路中,输入电流的波形为不规则的矩形波,波形按傅立叶级数分解为基波和各次谐波,其中的高次谐波将干扰输入供电系统。在逆变输出回路中,输出电流信号是受PWM载波信号调制的脉冲波形,对于GTR大功率
[电源管理]
基于TDD-LTE终端二次谐波抑制应用设计
一、二次谐波产生 谐波产生的根本原因是由非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非性的正弦电流,从而产生谐波。谐波频率都是基波频率的整倍数,根据法国数学家傅立叶(M.Fourier)分析原理:任何重复的波形都可以分解为含有基波频率和一系列为基波倍数的谐波的正弦波分量。     Band 40 TDD-LTE二次谐波要求-30dBc以下,为了保证高低温下测试通过,常温下终端制造商均会保证二次谐波在-36dBc以下,Band 40 TDD-LTE功放产生的谐波如下:     目前市场上B40滤波器在二次谐波的抑制典型值大约是24dB.理论上看,此滤波器足够抑制二次谐波。在实际的B40 TDD-LTE终端项
[电源管理]
基于TDD-LTE终端二次<font color='red'>谐波</font>的<font color='red'>抑制</font>应用设计
变频器谐波的由来、计算及抑制方法
变频器谐波是变频器运行过程中,需要对输入电源用大功率二极管整流(或晶体管/逆变模块)进行逆变;在其逆变过程中,在输入输出回路产生的高次谐波;变频器谐波对供电系统、负载及其他邻近电气设备产生干扰。通过傅立叶级数对谐波的分析表明,任何周期性变化的波形都可以分解为含有基波频率和一系列为基波整数倍数的谐波的正弦波分量。 变频器谐波是一个周期量的正弦波分量,其频率为基波频率的整数倍,变频器谐波的幅值大小和谐波相对于基波的相位关系都是影响这个周期量的重要因素。通俗地说,基波频率是50HZ,那么谐波就是频率为100HZ、150HZ、200HZ...N*50HZ的正弦波。 一、变频器的谐波从何而来 1、变频器输入端谐波产生机理 变频器的主
[嵌入式]
变频器<font color='red'>谐波</font>的由来、计算及<font color='red'>抑制</font>方法
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved