用于低噪声恒流电荷泵的误差放大器设计

最新更新时间:2012-02-12来源: 互联网关键字:低噪声  恒流  电荷泵  误差放大器 手机看文章 扫描二维码
随时随地手机看文章

现代便携式数码设备离不开显示器,而作为显示器背光源的白光LED(发光二极管)在很多方面(比如使用寿命,能耗)都有着优于传统CCFL(Cold Cathode Fluorescent Lamps,冷阴极荧光灯)数倍甚至数十倍的性能,所以,由它作为显示器背光已成为一种趋势。

  由于白光LED的亮度受其驱动电流影响较大,因此设计稳定电流的驱动器一直是一个技术热点,其中的一种方法是采用串联式的连接LED方式,这种方式结构复杂,而且需要电感,因此会产生EMI,且占用芯片面积大,成本高;另一种方式是采用电荷泵提供并联的几路恒定电流,这种方式无需电感,所以不会出现第一种方式的EMI等问题。本文所述的EA就是用于此种电荷泵的LED驱动器,它可保证充电电流恒定以实现低噪声工作。

  EA作为一种基本的集成电路(IC)模拟电路单元,以其高精准的电压基准、低噪声、高的电源噪声抑制比(PSRR)和高的共模抑制比(CMRR)。而被广泛用在了模数转换器ADC、数模转换器DAC、LDO驱动器、及射频电路中。文中设计了一款用于电荷泵的新型EA,与以前出现的EA相比,该EA的特点如下:

  1)误差放大器的输入级电源由电荷泵的稳定输出偏置,而非不断下降的,从而保证了供电的稳定性;

  2)引入动态补偿电路,以保证频率特性,同时降低了成本,传统的方法是用外接电容和其等效串连电阻进行频率补偿;

  3)电容中的弥勒电容不但补偿了频率,还进一步改善了电路的PSRR性能;

  4)一些附加电路,如:启动电路、负载电流采样、过流保护等可进一步提高整个电路的精度。

  1 电路设计

  该改进型误差放大器的电路以及一些附加电路和反馈电路如图1所示,为了方便分析,图中把各个功能模块用虚线划开。

  

误差放大器电路图

 

  1.1 误差放大器

  此电路的核心是一个高增益大PSRR的跨导运算放大器(OTA),其它包含一级放大器Gml,二级放大器Gin2,和一个频率补偿电路。其中Gml是差分输入的基本对称OTA,它将从正端和负端分别反馈回来的基准电压和VOUT分压信号放大。偏置电流模块由M7、M8、M11、M12、M13、M14、M15以及R3组成。偏置电流I0是I3的两倍,由基准电压Vref、NMOS管M15的阈值电压和R3来设定。而M7和M8的源端都接到电荷泵的输出VOUT,因此可以通过设定M7、M8使误差放大器在VOUT达到某个值(如3.6 V)时才工作。同时这一部分还会产生一个SN信号来启动过流保护单元,并提供偏置。Gm1的输出级是一个电流放大结构,由M3、M6、M9和M10构成,放大比例为3:1,即: (W/L)6:(W/L) 5=(W/L)4:(W/L)3=3:1,其中W和L分别是晶体管的宽和长。这个比例是在折衷考虑增益带宽、相位余量和输出噪声后得到的。

  第二级放大电路的增益Gm2主要用来增加电路的开环增益,并减小误差放大器的输出阻抗,从而增大带宽。它是一个反相放大器,由M20和M21组成,两个管子都有较大的宽长比。频率补偿电路中M16和M20的宽长比决定了电路的低频开环增益。

  为了改善电路的频率特性,本设计中运用了两种补偿电路。一个是动态频率补偿电路,如图1中的由开关电阻和MOS管寄生电容组成的RC网络,它可以通过去采样负载电流来改变MOS管的工作点,即:通过改变开关电阻和MOS管寄生电容的值来实现动态补偿。由于其零极点频率会随负载电流的增加(减小)而增加(减小),因此,电荷泵单位增益频率(UGF)在负载变化时基本保持不变,这就保证了电荷泵在全负载范围内能够稳定工作。图1中的动态频率补偿电路包括M16、M17、M18、M19和C2,其中,M16、M18和C2不仅仅是放大器Gml的负载,同时还有频率补偿的功能。这里将M18的栅面积设计得很大,用以产生一个大的寄生电容。电流采样电路中的M31和M19组成一个镜像电流源,设计它们的W/L比为1:5。通过晶体管工作基本原理可知,M18的栅压VGM18为:

  

 

  从上式可以清楚的看到VGM18和IS的关系(采样电流,这里IS≈IGM/3000),即:VGM18随着IGM变化。也就是说RC动态补偿网将会随着IGM的变化而变化。

  电路中的另外一个频率补偿用到了第一和第二级放大器之间的电容C1,反馈从输出引入,这种方法同时增大了电路的PSRR。

1.2 其它功能模块

  另外,在设计本电路时,还应当设计一些其它的功能模块,包括:启动电路、电流采样、过流保护等电路。

  不同于传统方法,本设计将Gml差分输入的电源偏置连接在电荷泵的输出电压VOUT上,而不是VIN,这就使得此偏置电压非常稳定,其原因在于VOUT的纹波很小,而且噪声极低。

  然而,这种设计也会产生一个问题,即:VOUT在系统上电之初为零,而此时EA又不工作,使得整个电路无法工作,所以,需要增加一个启动单元,以使系统在刚上电时就可使电荷泵工作,从而使VOUT上升,当VOUT增大到阈值时,EA开始工作。当电路启动起来以后,电荷泵驱动电压则由EA输出控制M22、R4和M24使能开启电路,而M23、M25、M26和R5将其关断。

  系统中的电流采样电路采取一个与IGM成正比的小电流IS,此电路由M27、M28、M29和M30组成。应将M27的栅极和电荷泵中电流镜的栅极相连接,可将采样比例设定为1:3000。其采样原理如下:

  由于基准电路提供的是一个非常小的偏置电流(大概1μA),那么M28的栅源电压VGS也就很小,差不多就是其阈值电压。而M29的宽长比W/L被设计得很大,那么采样电流IS就很小,则M29的栅源电压VGS也很小,因此,M27和电荷泵中开关管的VDRAIN差不多大小。其过流保护电路包含M32、M33和M34。这里,M34和电流采样电路的M31相互镜像。它是通过采样电流IS来控制电荷泵中开关管的栅极电压,因此限制了最大值。在正常范围内,IS很小,M32和M34一起驱动,M33的VGATE为高,过流保护单元不工作。当IGM增加时,M34的VDRAIN(或者M33的VGATE)将慢慢减小。当增大到某个值时,M33完全导通,反馈回路将VDRIVER限制在某个值,从而限制IGM,实现过流保护功能。M32、M33和M34的尺寸在设计时应注意匹配。限流工作时,电路形成一个反馈回路,C3作为弥勒补偿以使限定电流稳定。

  为了评估所设计电路的性能,本系统利用Hynix 0.5μm CMOS工艺进行仿真。图2给出了HSPICE仿真在不同电源电压下频率与增益的比较结果,仿真结果表明在很宽的频率范围内.增益超过60 DB。

  

 

  不同电源电压下PSRR与频率的关系及不同IGM下CMRR与频率的关系分别在图3和图4中给出。结果表明,该电路的PSRR和CMRR分别可达到65 DB和70 DB。

  为了进一步测定设计的可用性,这里还绘制了一个用到该EA的恒流电荷泵版图,如图5所示,以便开展后续工作。

  

 

  3 结束语

  本文基于对称OTA结构,设计了一款用于低噪声恒流电荷泵的误差放大器EA,即在传统的设计基础上引入了动态频率补偿及弥勒补偿。新设计的EA不仅降低了输出波纹及噪声,而且改善了稳定性。从电路分析和仿真结果可以看到在100 Hz~10 MHz频率范围内,其增益高达60 DB,PSRR为65 DB,而CMRR则高达70 DB,系统达到了较高的性能。

关键字:低噪声  恒流  电荷泵  误差放大器 编辑:神话 引用地址:用于低噪声恒流电荷泵的误差放大器设计

上一篇:共模扼流圈实现高清多媒体共模噪音抑制
下一篇:电子传感器选用方法

推荐阅读最新更新时间:2023-10-12 20:35

MAXIM低噪声低失真1.35GHz差分放大器
  Maxim推出低噪声、低失真、1.35GHz差分放大器MAX9626–MAX9628,用于驱动高速流水线ADC。该系列器件集成增益设置电阻,因而无需外部反馈电阻。这种方式可有效降低寄生效应,提高带宽和THD性能,同时节省空间和成本。MAX9626–MAX9628非常适合用于驱动通信、医疗成像、自动测试设备和高性能仪表等应用中的12位至16位流水线ADC。   MAX9626–MAX9628的输出共模电压通过一个输入引脚(VOCM)设置,无需使用耦合变压器或交流耦合电容。这种方式能够避免外部元件非理想特性的影响,因而可节省电路板空间、提高性能。此外,宽输出共模范围和在单电源供电时接受负输入信号的能力,使该系列器件能够与市面上
[网络通信]
Nordic 推出功率放大器/低噪声放大器(PA/LNA)产品
nRF21540 RF前端模块是经过优化以提高Nordic nRF52和nRF53系列先进多协议无线SoC的链路预算的范围扩展器,具有+21 dBm TX输出功率和13 dB RX增益,与nRF52系列SoC结合使用时,可确保实现出色的链路预算,扩展范围达到16倍。 Nordic Semiconductor宣布推出首款功率放大器/低噪声放大器(PA/LNA)产品nRF21540TM RF前端模块(FEM),完美补充了Nordic的nRF52和nRF53系列多协议系统级芯片(SoC)。这款RF FEM的PA提供了高达+21 dBm的高度可调TX功率提升,而LNA则提供了+13 dB的RX增益。LNA的低噪声系数(NF)仅为
[网络通信]
Nordic 推出功率<font color='red'>放大器</font>/<font color='red'>低噪声</font><font color='red'>放大器</font>(PA/LNA)产品
用于高阻抗电路的低失真、低噪声放大器
用于高阻抗电路的低失真、低噪声放大器 电路的功能 近年来,噪声及失真特性得到改进的低噪声放大器品种繁多,已无须用分立元件制作了。此外,也有为了使噪声减到最小而降低源极电阻,同时输入端的偏流IR又比通用OP放大器还大的OP放大器(如NE5534等)。但是,有时很难在高输入阻抗电路中使用这些放大器。 本文提供的电路是在低失真、低噪声OP放大NE5534A的基础上加分立元件、并把输入偏置电路作成FET差动电路,使失真和噪声均降到很小。另外,输出电路电路为推挽式,可以使驱动更低的负载电阻。 电路工作原理 在输入级使用了双FET,以求减少偏流,实现高输入电阻,以满足信号源的要求,同时为了用密勒效应减少高
[模拟电子]
用于高阻抗电路的低失真、<font color='red'>低噪声</font><font color='red'>放大器</font>
Diodes 公司推出符合汽车规格的精密功率放大器,提供宽动态范围与低噪声作业
Diodes 公司推出符合汽车规格的精密功率放大器,提供宽动态范围与低噪声作业 【2022 年 10 月 18 日美国德州普拉诺讯】Diodes 公司 (Diodes) 推出两款针对不同讯号频率状况的精密功率放大器 (op-amps),解决现代汽车设计中进阶讯号调节的需求。 DIODES™ AS2376Q 低讯噪比特性表示其在高频使用上已进行优化,例如车载充电器 (OBC)、DC-DC 转换器、电池管理系统 (BMS) 实作、泵、安全气囊、位置传感器及占用侦测系统。DIODES™ AS2333Q 于 8 月发表,所表现出的最小静态电流使其非常适合解决车辆即使在非活动状态时仍继续执行的功能。 5.5MHz 带宽使 AS
[模拟电子]
Diodes 公司推出符合汽车规格的精密功率<font color='red'>放大器</font>,提供宽动态范围与<font color='red'>低噪声</font>作业
运算放大器增益误差设计指南
  您坐下来为您的电路选择合适的 运算放大器 (op amp) 时,首先要做的便是确定系统通过该放大器进行传输的信号带宽。一旦您确定下来这一点,您便可以开始寻找正确的放大器。来自高速设计专家的告诫是:您应该避免使用相对您的应用而言速度过快的模拟器件。因此,您要尽量选择一种闭环带宽稍高于信号最大频率的放大器。   它听起来好像是一种较好的产品选择方案,但是这种设计方法将可能会给您的应用板带来灾难性的后果。在实验室中,您可能会发现当您将应用最大频率的输入正弦波信号置入系统时,您放大器的输出信号并未穿过希望的全刻度模拟范围。信号增益远低于预期。您放大器的转换速率等级超出所需。另外,您并没有 驱动放大器 输出至电源轨中。哪里出
[安防电子]
运算<font color='red'>放大器</font>增益<font color='red'>误差</font>设计指南
AD8429:1 nV√Hz 低噪声仪表放大器
AD8429擅长测量微小信号,可提供1 nV/√Hz的超低输入噪声性能。
[模拟电子]
恒流充电与放电电池测试仪(msp430单片机主控)
电路原理图如下: (1)充电电流精度测试 测试方法:输入接直流稳压电源,使 U2 = 30V,对电池进行恒流充电,按键 0.05A步进值调节电流 I10,用万用表测量实际充电电流 I1,显示电流值 I11,结果 如表1所示,可以计算出电流控制精度 1 ,显示精度 2 。满足题目基础部分要 求。 表1 充电电流控制精度测试表 I10/A 1.0 1.25 1.5 1.65 2.0 I1/A 0.993 1.247 1.505 1.655 2.008 I11/A 1.0 1.25 1.5 1.65 2.005 1 /% 0.7 0.24 0.33 0.3 0.4 2 /% 0 0 0 0 0.25 (2)充电电流变化率测试 测试
[单片机]
<font color='red'>恒流</font>充电与放电电池测试仪(msp430单片机主控)
采用集成电荷泵的轨到轨放大器改善输入偏置精度
在当前的电子系统中,负电源正在消失,正电源电压也在逐渐降低。这种趋势使得 轨到轨放大器 日益流行。尽管电源电压在不断地改变,但信号电平通常保持不变。例如,标准的视频信号为2V,当电源电压降低到2V时,放大器/缓冲器必须线性地、准确地工作于整个2V电压范围内。本文将专门讨论轨到轨放大器输入级的发展,并详细讨论克服了轨到轨放大器缺点的输入增强电路。 为简单起见,我们的讨论仅限于MOSFET放大器。图1显示了基本运放的输入级。一个被称为差分对的晶体管对位于电流源上端,用以适应差分输入。尽管这种拓扑能够提供差分增益并抑制共模信号,但其局限性在于其工作范围。在3V的单电源条件下,输入电压范围在0~1.5V。如果输入电压高于
[模拟电子]
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved